

## DESCRIPTION

The ES1869 AudioDrive® solution is a mixed-signal single chip that adds 16-bit stereo sound and FM music synthesis to personal computers. It is compliant with Microsoft® PC 97 and PC 98 specifications and WHQL audio requirements. The ES1869 possesses an embedded microcontroller, OPL3™ superset ESFM™ music synthesizer, 16-bit stereo wave ADC and DAC, 16bit stereo music DAC, MPU-401 UART serial port, dual game port, full Plug and Play support, CD-ROM IDE interface, hardware master volume control, two serial port interfaces to external DSP and external wavetable music synthesizer, I<sup>2</sup>S Zoom Video interface, DMA control logic with FIFO, and ISA bus interface logic. There are three stereo inputs (typically line, CD audio, and auxiliary line) and a mono microphone input. All of this on a single chip that can be designed into a motherboard, add-on card, or integrated into other peripheral cards such as Fax/ Modem, VGA, LAN, I/O, etc.

The ES1869 *Audio*Drive<sup>®</sup> solution can record, compress, and play back voice, sound, and music with built-in mixer controls. It supports full-duplex operation for simultaneous record and playback using two DMA channels. The ESFM<sup>™</sup> synthesizer has extended capabilities within native mode operation providing superior sound and power-down capabilities. It is a register compatible superset of the OPL3 FM synthesizer.

The ES1869 *Audio*Drive<sup>®</sup> solution supports the full ISA Plug and Play standard. It provides Plug and Play configuration for logical devices: audio, ESFM<sup>™</sup> synthesizer, game port, MPU-401, CD-ROM IDE, Modem, and an additional userdefined device.

The MPU-401 serial port is for interfacing to an external MIDI device.

The ES1869 also incorporates **■***Spatializer*<sup>®</sup> VBX<sup>™</sup> technology, provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc. This processor expands the stereo sound field emitted by two speakers to create a resonant 3-D sound environment.

The speakerphone application can be implemented either by digital interface through the DSP serial port, or by analog interface through Mono-In and Mono-Out.

A DSP serial interface in the ES1869 allows an external DSP to take over ADC or DAC resources.

The ES1869 *Audio*Drive<sup>®</sup> solution supports telegaming architecture with headsets and includes data paths for host-based Acoustic Echo Cancellation processing.

Advanced power management features include suspend/ resume from disk or host-independent self-timed powerdown and automatic wake-up. The ES1869 is compliant to the ACPI standard.

It is available in an industry-standard 100-pin Plastic Quad Flat Pack (PQFP) and Thin Quad Flat Pack (TQFP) packages.

## FEATURES

- Single, high-performance, mixed-signal, 16-bit stereo VLSI chip
- High-quality, OPL3 superset ESFM<sup>™</sup> music synthesizer
- IDE CD-ROM interface
- High-performance DMA supports Demand Transfer and F-type
- Integrated Spatializer® 3-D VBX<sup>™</sup> stereo audio effects technology provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc.

## Plug and Play Features

- On-chip Plug and Play support for audio, joystick port, FM, Modem, MPU-401, CD-ROM, and a user-defined I/O device
- Software address mapping with software chip select, plus
   4 DMA and 6 IRQ selections for motherboard implementation
- Internal configuration data for audio Plug and Play support
- Serial interface for Plug and Play resource EEPROM

### **Record and Playback Features**

- Record, compress, and play back voice, sound, and music
- 16-bit stereo ADC and DAC
- Programmable independent sample rates from 6 kHz to 48.0 kHz for record and playback
- Full-Duplex operation for simultaneous record and playback
- 2- and 3-button hardware volume control for up, down, and mute

## Inputs and Outputs

- Stereo inputs for line-in, auxiliary A (CD audio), and auxiliary B, and a mono input for microphone
- MPU-401 (UART mode) interface for wavetable synthesizers and MIDI devices



FEATURES

- Integrated dual game port
- I<sup>2</sup>S Zoom Video port interface with a sample rate up to 48 kHz for MPEG audio
- Serial port interface to external DSP (e.g. AT&T, TI, API, and MWAVE)
- Separate mono input (MONO\_IN) and mono output (MONO\_OUT\_) for telegaming

## **Mixer Features**

- 7-channel mixer with stereo inputs for line, CD audio, auxiliary line, music synthesizer, digital audio (wave files), and mono inputs for microphone and speakerphone
- Programmable 6-bit logarithmic master volume control

## Power

 Advanced power management with self-timed powerdown, automatic wake-up, and suspend/resume to and from disk • Supports 3.3 V or 5.0 V operation

## Compatibility

- Supports PC games and applications for Sound Blaster<sup>™</sup>
   and Sound Blaster<sup>™</sup> Pro
- Supports Microsoft Windows<sup>™</sup> Sound System<sup>®</sup>
- Meets PC 97 and PC 98 and WHQL specifications

## **Operating Systems**

- Microsoft Windows®95 and Windows®98
- Microsoft Windows<sup>™</sup> 3.1 and Windows for Workgroups<sup>™</sup>
- Windows Sound System
- Microsoft Windows NT<sup>™</sup> 4.0
- IBM<sup>®</sup> OS/2<sup>®</sup> Warp<sup>™</sup>

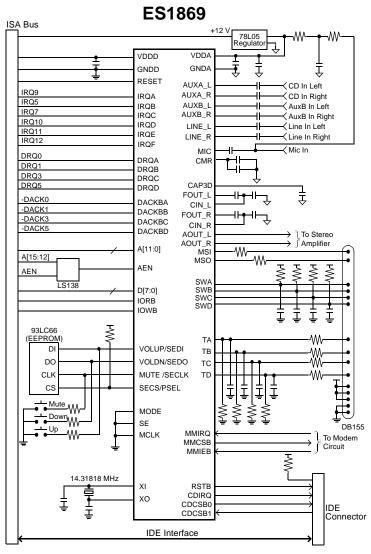
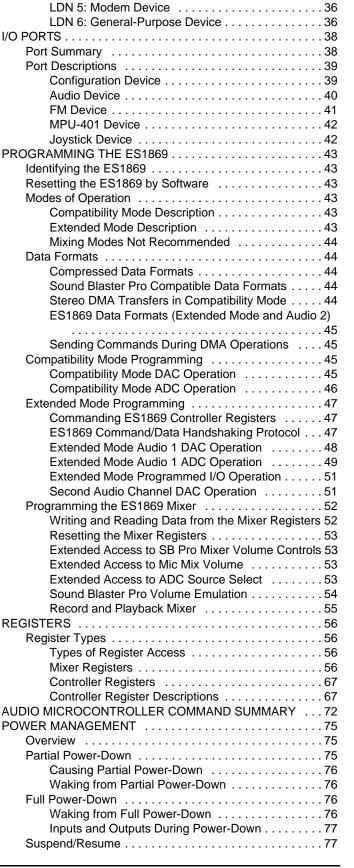




Figure 1 Typical Application

CONTENTS

# CONTENTS

| DESCRIPTION                                     |     |
|-------------------------------------------------|-----|
| FEATURES                                        |     |
| PINOUT                                          | . 5 |
| PIN DESCRIPTION                                 | . 6 |
| FUNCTIONAL DESCRIPTION                          | . 9 |
| Digital Subsystems                              |     |
| Analog Subsystems                               |     |
| MIXER SCHEMATIC BLOCK DIAGRAM                   |     |
|                                                 |     |
| BUS INTERFACING                                 |     |
| DIGITAL AUDIO                                   |     |
| Programming DMA Transfers                       |     |
| Data Formats                                    |     |
| DMA Transfers in Compatibility Mode             | 13  |
| DMA Transfers in Extended Mode                  | 14  |
| Data Transfers Using the Second Audio Channel . |     |
| External DMA Sharing with Audio DMA             |     |
| DRQ Latch Feature                               |     |
|                                                 |     |
| First DMA Channel CODEC                         |     |
| INTERRUPTS                                      |     |
| Interrupt Status Register                       |     |
| Interrupt Mask Register                         |     |
| Sharing Interrupts                              | 18  |
| PERIPHERAL INTERFACING                          | 19  |
| I <sup>2</sup> S Serial Interface               |     |
| I <sup>2</sup> S Serial Interface Timing        |     |
| Wavetable Interface                             |     |
|                                                 |     |
| DSP Interface                                   |     |
| DSP Operating Modes                             |     |
| Serial Data Format                              |     |
| Modem Interface                                 |     |
| Modem Operating Modes                           | 22  |
| IDE CD-ROM Interface                            | 22  |
| General-Purpose I/O Device                      |     |
| Joystick / MPU-401 Interface                    |     |
| MPU-401 UART Mode                               |     |
| Joystick / MIDI External Interface              |     |
| Serial EEPROM Interface                         |     |
|                                                 |     |
| EEPROM ROM Format                               |     |
| MONO_IN and MONO_OUT                            |     |
| Spatializer® VBX <sup>™</sup> Audio Processor   |     |
| Hardware and Master Volume Control              |     |
| PC Speaker                                      |     |
| PC Speaker Volume Control                       | 26  |
| ANALOG DESIGN CONSIDERATIONS                    | 27  |
| Game Port                                       | 27  |
| Reference Generator                             |     |
| Switch-Capacitor Filter                         |     |
| Audio Inputs and Outputs                        |     |
| PNP CONFIGURATION AND REGISTERS                 |     |
|                                                 |     |
| Access to PnP Registers                         |     |
| Configuration Ports                             |     |
| Bypass Key                                      |     |
| Card-Control Card-Level Registers (00h-07h)     |     |
| Vendor-Defined Card-Level Registers (20h-29h)   | 30  |
| Logical Device Registers                        |     |
| LDN 0: Configuration Device                     | 32  |
|                                                 |     |
| LDN 2: Joystick Device                          |     |
| LDN 3: MPU-401 Device                           |     |
|                                                 | 54  |



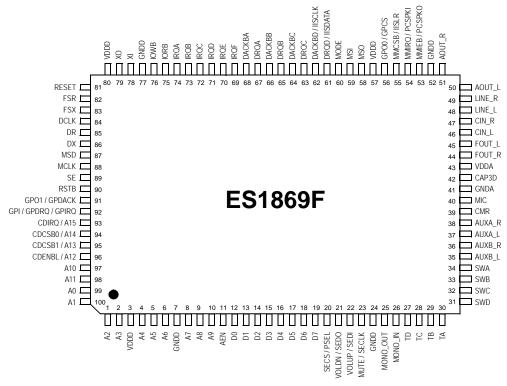




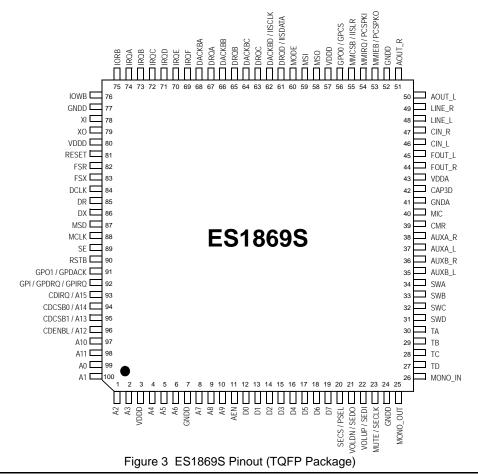


| Pop Prevention in the External Amplifier.77Power Management and the FM Synthesizer.78Self-Timed Power-Down.78Enabling Self-Timed Power-Down.78General-Purpose Outputs and Power-Down.78ELECTRICAL CHARACTERISTICS.79Absolute Maximum Ratings.79Thermal Characteristics.79Operating Conditions.79Operating Current.79TIMING DIAGRAMS.80TIMING CHARACTERISTICS.85MECHANICAL DIMENSIONS.86                                                                                                                                                                                                                                                                                                                                                                                                                          | ES1869F PQFP Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURESFigure 1 Typical Application.2Figure 2 ES1869F Pinout (PQFP Package).5Figure 3 ES1869S Pinout (TQFP Package).5Figure 4 ES1869 Block Diagram.9Figure 5 ES1869 Mixer Schematic Block Diagram.11Figure 6 Data Transfer Modes.13Figure 7 DRQ Latch.15Figure 9 Telegaming Mode.20Figure 10 Default Mode.20Figure 11 16-Bit Data, Positive Sync Pulse.21Figure 12 Speakerphone or Modern w/ Voice-Over-Data.22Figure 13 IDE Interface – Typical Application.22Figure 16 Serial EEPROM – Typical Application.24Figure 17 PC Speaker Volume Circuitry.26Figure 18 Reference Generator Pin Diagram.27Figure 20 Configuration Register Set.28Figure 21 Command Transfer Timing.45Figure 22 Summary of Power States in the ES1869.75Figure 23 Reset Timing.80Figure 24 I/O Read Cycle.80Figure 25 I/O Write Cycle.80 | Figure 26Compatibility Mode DMA Write Cycle81Figure 27Compatibility Mode DMA Read Cycle81Figure 28Miscellaneous Output Signals82Figure 29Serial Mode Receive Operation82Figure 30Serial Mode Transmit Operation83Figure 31Serial Input Timing for I2S Interface83Figure 32I2S Digital Input Format with 16 SCLK Periods84Figure 33ES1869F PQFP Mechanical Dimensions86Figure 34ES1869S TQFP Mechanical Dimensions87Figure 35Example ZV Port Implementation93Figure 36Typical ZV Port Audio Implementation94Figure 37Audio Interface Timing95Figure 38I2S Digital Input Format with 16 SCLK periods96Figure 39ES1869 – Motherboard Configuration98Figure 40ES1869 and ES692 – Motherboard Configuration99Figure 41Amplifier – Motherboard Configuration100Figure 43ES1869 – Sound Card Configuration104Figure 44ES1869 and ES692 – Sound Card Configuration104Figure 45Amplifier – Sound Card Configuration106Figure 46PC Interface – Sound Card Configuration107Figure 47Analog Components on One Side of the PCB110Figure 48Analog Components on Both Sides of the PCB110 |

## TABLES


4

| Table 1    ISA Bus Interface Pins    12                      |
|--------------------------------------------------------------|
| Table 2 Extended Mode Audio 1 Controller Registers   14      |
| Table 3 Audio 2 Related Mixer Registers    15                |
| Table 4    ES1869 Interrupt Sources                          |
| Table 5 Interrupt Status Bits in Config_Base+6h              |
| Table 6    I²S Interface Pins    19                          |
| Table 7    Wavetable Interface Pins    19                    |
| Table 8 DSP Interface Pins    19                             |
| Table 9 External Modem Interface Pins                        |
| Table 10    IDE CD-ROM Interface Pins    22                  |
| Table 11 Logical Device Summary                              |
| Table 12 I/O Ports for Configuration, Audio, FM, MPU-401,    |
| and Joystick Devices                                         |
| Table 13 Comparison of Operation Modes                       |
| Table 14 Uncompressed DAC Transfer Modes    46               |
| Table 15    Uncompressed ADC Transfer Modes                  |
| Table 16 Command Sequences for DMA Playback                  |
| Table 17 Command Sequence for DMA Record    50               |
| Table 18         Sound Blaster Pro/Extended Access Registers |


| Table 19 | SB Pro Read Volume Emulation                    |
|----------|-------------------------------------------------|
| Table 20 | SB Pro Write Volume Emulation 54                |
| Table 21 | Extended Access Mixer Volume Values 55          |
| Table 22 | Mixer Input Volume Registers 55                 |
|          | Sound Blaster Compatibility Register Summary 56 |
| Table 24 | ESS Mixer Registers Summary 57                  |
| Table 25 | ESS Controller Registers Summary 67             |
| Table 26 | Command Summary 72                              |
| Table 27 | Digital Characteristics                         |
| Table 28 | Analog Characteristics                          |
| Table 29 | Timing Characteristics 85                       |
| Table 30 | Common Clock Frequencies 94                     |
| Table 31 | AC Parameters for Audio Signals 95              |
| Table 32 | ZV Port Interface Pin Assignments               |
| Table 33 | ES1869 Motherboard Bill of Materials (BOM) 102  |
| Table 34 | ES1869 Sound Card Bill of Materials (BOM) 108   |
|          |                                                 |

PINOUT

## PINOUT









## **PIN DESCRIPTION**

| Name     | Number                        | I/O | Description                                                                                                                                                                                                                                                                                                           |  |
|----------|-------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A[11:0]  | 99,100,1,2,6:4,<br>10:8,97,98 | I   | Address inputs from the ISA bus.                                                                                                                                                                                                                                                                                      |  |
| VDDD     | 3,57,80                       | I   | Digital supply voltage (5 V ± 10%).                                                                                                                                                                                                                                                                                   |  |
| GNDD     | 7,24,52,77                    | Ι   | Digital ground.                                                                                                                                                                                                                                                                                                       |  |
| AEN      | 11                            | I   | Active-low address enable from the ISA bus.                                                                                                                                                                                                                                                                           |  |
| D[7:0]   | 19:12                         | I/O | ISA bidirectional data bus.                                                                                                                                                                                                                                                                                           |  |
| PSEL     | 20                            | Ι   | Selects the PnP ROM device used:0Internal ROM193LC66 - 512 x 8, 9 address bits                                                                                                                                                                                                                                        |  |
| SECS     |                               | I/O | Serial EEPROM CS. This is an input pin during RESET.                                                                                                                                                                                                                                                                  |  |
| SEDO     | 21                            | Ι   | Input connected to the data output pin of the external PnP serial EEPROM.                                                                                                                                                                                                                                             |  |
| VOLDN    | 21                            | I   | Active-low volume decrease button input with internal pull-up (shared with the SEDO pin).                                                                                                                                                                                                                             |  |
| SEDI     | 22                            | 0   | Output connected to the data input pin of the external PnP serial EEPROM.                                                                                                                                                                                                                                             |  |
| VOLUP    | 22                            | Ι   | Active-low volume increase button input with internal pull-up (shared with the SEDI pin).                                                                                                                                                                                                                             |  |
| MUTE     | 22                            | Ι   | Active-low mute toggle button input with internal pull-up (shared with the SECLK pin).                                                                                                                                                                                                                                |  |
| SECLK    | 23                            | 0   | External serial EEPROM clock output for PnP.                                                                                                                                                                                                                                                                          |  |
| MONO_OUT | 25                            | 0   | Mono output with source select and volume control (including mute). This pin can drive an external 5k ohm AC load.                                                                                                                                                                                                    |  |
| MONO_IN  | 26                            | Ι   | Mono input to mixer and ADC. This pin has an internal pull-up to CMR.                                                                                                                                                                                                                                                 |  |
| T(A-D)   | 27:30                         | I/O | Joystick timer pins. These pins connect to the X-Y positioning variable resistors for the two joysticks.                                                                                                                                                                                                              |  |
| SW(A-D)  | 31:34                         | Ι   | Active-low joystick switch setting inputs. These pins have an internal pull-up resistor. The joystick port is typically at address 201h.                                                                                                                                                                              |  |
| AUXB_L   | 35                            | Ι   | Auxiliary B input left. AUXB_L has an internal pull-up resistor to CMR. Normally intended for connection to an external music synthesizer or other line-level source.                                                                                                                                                 |  |
| AUXB_R   | 36                            | I   | Auxiliary B input right. AUXB_R has an internal pull-up resistor to CMR. Normally intended for connection to an external music synthesizer or other line-level source.                                                                                                                                                |  |
| AUXA_L   | 37                            | I   | Auxiliary A input left. AUXA_L has an internal pull-up resistor to CMR. Normally intended for connection to an internal or external CD-ROM analog output.                                                                                                                                                             |  |
| AUXA_R   | 38                            | Ι   | Auxiliary A input right. AUXA_R has an internal pull-up resistor to CMR. Normally intended for connection to an internal or external CD-ROM analog output.                                                                                                                                                            |  |
| CMR      | 39                            | 0   | Common mode buffered reference output (2.25 V $\pm$ 5%). This pin should be bypassed to analog ground with a 47 $\mu$ F electrolytic capacitor with a 0.1 $\mu$ F capacitor in parallel.                                                                                                                              |  |
| MIC      | 40                            | Ι   | Microphone input. MIC has an internal pull-up resistor to CMR.                                                                                                                                                                                                                                                        |  |
| GNDA     | 41                            | Ι   | Analog ground.                                                                                                                                                                                                                                                                                                        |  |
| CAP3D    | 42                            | Ι   | Bypass capacitor to analog ground for 3-D effects.                                                                                                                                                                                                                                                                    |  |
| VDDA     | 43                            | Ι   | Analog supply voltage (5 V $\pm$ 5%). Must be greater than or equal to VDDD - 0.3 V.                                                                                                                                                                                                                                  |  |
| FOUT_R   | 44                            | 0   | Filter output right. FOUT_R is AC-coupled externally to CIN_R to remove DC offsets. This output has an internal series resistor of about 5k ohms. A capacitor to analog ground on this pin can be used to create a low-pass filter pole that removes the switching noise introduced by the switched-capacitor filter. |  |

PIN DESCRIPTION



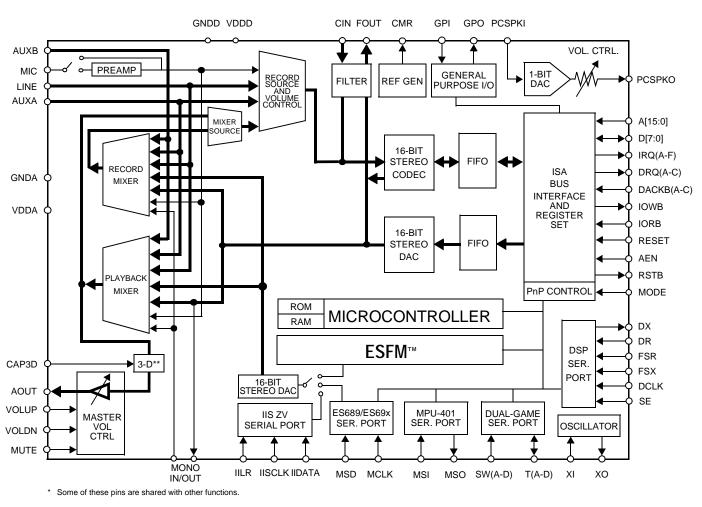
| Name                | Number     | I/O | Description                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FOUT_L              | 45         | 0   | Filter output left. FOUT_L is AC-coupled externally to CIN_L to remove DC offsets. This output has an internal series resistor of about 5k ohms. A capacitor to analog ground on this pin can be used to create a low-pass filter pole that removes the switching noise introduced by the switched-capacitor filter.                                 |  |  |
| CIN_L               | 46         | Ι   | Capacitive coupled input left. CIN_L has an internal pull-up resistor to CMR of approxi-<br>mately 50k ohms.                                                                                                                                                                                                                                         |  |  |
| CIN_R               | 47         | Ι   | Capacitive coupled input right. CIN_R has an internal pull-up resistor to CMR of approxi-<br>mately 50k ohms.                                                                                                                                                                                                                                        |  |  |
| LINE_L              | 48         | Ι   | Line input left. LINE_L has an internal pull-up resistor to CMR.                                                                                                                                                                                                                                                                                     |  |  |
| LINE_R              | 49         | I   | Line input right. LINE_R has an internal pull-up resistor to CMR.                                                                                                                                                                                                                                                                                    |  |  |
| AOUT_L              | 50         | 0   | Line-level stereo output left. AOUT_L can drive a 10k ohm load.                                                                                                                                                                                                                                                                                      |  |  |
| AOUT_R              | 51         | 0   | Line-level stereo output right. AOUT_R can drive a 10k ohm load.                                                                                                                                                                                                                                                                                     |  |  |
| MMIEB °             |            | Ι   | Modem interrupt enable active-low input. Generated from the modem UART.                                                                                                                                                                                                                                                                              |  |  |
| PCSPKO <sup>1</sup> | 53         | 0   | PC speaker analog output.                                                                                                                                                                                                                                                                                                                            |  |  |
| MMIRQ º             | <b>F</b> 4 | I   | Modem interrupt request active-high input. IRQ input from the modem device gets mapped to an IRQ output on the ES1869 based on the PnP configuration.                                                                                                                                                                                                |  |  |
| PCSPKI 1            | 54         | Ι   | Normally low digital PC speaker input. This signal is converted to an analog signal with volume control and appears on analog output PCSPKO.                                                                                                                                                                                                         |  |  |
| IISLR 1             |            | Ι   | Left/right strobe for I <sup>2</sup> S interface. This pin has a pull-down.                                                                                                                                                                                                                                                                          |  |  |
| MMCSB º             | 55         | 0   | Output from ES1869 for the modem CSB. The address space is determined by the PnP configuration.                                                                                                                                                                                                                                                      |  |  |
| GPCS                | 56         | 0   | If selected by the PnP logic, GPCS is an active-high user-defined chip select for an external general-purpose device.                                                                                                                                                                                                                                |  |  |
| GPO0                | 50         | 0   | Output that is set low by external reset and is thereafter controlled by bit 0 of port<br>Audio_Base+7h. Available to system software for power management or other applications.                                                                                                                                                                    |  |  |
| MSO                 | 58         | 0   | MIDI serial data output.                                                                                                                                                                                                                                                                                                                             |  |  |
| MSI                 | 59         | Ι   | MIDI serial data input. Schmitt trigger input with internal pull-up resistor. Either MPU-401 or Sound Blaster formats.                                                                                                                                                                                                                               |  |  |
| MODE                | 60         | Ι   | Mode function pin. Connect to either GNDD or VDDD to select the function of the groups of multiple function pins (indicated by a superscript 0 or 1).                                                                                                                                                                                                |  |  |
| DRQD º              | 04         | 0   | Tri-state output. Optional 16-bit DMA request for IDE interface.                                                                                                                                                                                                                                                                                     |  |  |
| IISDATA 1           | 61         | Ι   | Serial data for I <sup>2</sup> S interface. This pin has a pull-down.                                                                                                                                                                                                                                                                                |  |  |
| DACKBD 0            |            | Ι   | Optional 16-bit DMA acknowledge for IDE interface.                                                                                                                                                                                                                                                                                                   |  |  |
| IISCLK 1            | 62         | Ι   | Serial shift clock for I <sup>2</sup> S interface. This pin has a pull-down.                                                                                                                                                                                                                                                                         |  |  |
| DRQ(A-C)            | 67,65,63   | 0   | Three (A,B,C) active-high DMA requests to the ISA bus. Unselected DRQ outputs are high impedance. When DMA is not active, the selected DRQ output has a pull-down device that holds the DRQ line inactive unless another device that shares the same DRQ line can source enough current to make the DRQ line active. DRQs are software configurable. |  |  |
| DACKB(A-C)          | 68,66,64   | Ι   | Three (A,B,C) active-low DMA acknowledge inputs.                                                                                                                                                                                                                                                                                                     |  |  |
| IRQ(A-F)            | 69:74      | 0   | Six (A,B,C,D,E,F) active-high interrupt requests to the ISA bus. Unselected IRQ outputs are high impedance. IRQs are software configurable.                                                                                                                                                                                                          |  |  |
| IORB                | 75         | I   | Active-low read strobe from the ISA bus.                                                                                                                                                                                                                                                                                                             |  |  |
| IOWB                | 76         | I   | Active-low write strobe from the ISA bus.                                                                                                                                                                                                                                                                                                            |  |  |
| XI                  | 78         | Ι   | Crystal oscillator/external clock input. Connect to external 14.318 MHz crystal or clock source with CMOS levels.                                                                                                                                                                                                                                    |  |  |



**PIN DESCRIPTION** 

| Name             | Number | I/O | Description                                                                                                                                                                                                                                                       |  |
|------------------|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ХО               | 79     | 0   | Crystal oscillator output. Connect to external 14.318 MHz crystal.                                                                                                                                                                                                |  |
| RESET            | 81     | I   | Active-high reset from the ISA bus.                                                                                                                                                                                                                               |  |
| FSR              | 82     | I   | Input with internal pull-down. Frame sync for receive data from external DSP. Programma-<br>ble for active-high or active-low.                                                                                                                                    |  |
| FSX              | 83     | I   | Input with internal pull-down. Frame sync for transmit request from external DSP. Program-<br>mable for active-high or active-low.                                                                                                                                |  |
| DCLK             | 84     | Ι   | Input with internal pull-down. Serial data clock from external DSP. Typically 2.048 MHz.                                                                                                                                                                          |  |
| DR               | 85     | I   | Input with internal pull-down. Data receive pin from external DSP.                                                                                                                                                                                                |  |
| DX               | 86     | 0   | Tri-state output. Data transmit to external DSP. High impedance when not transmitting.                                                                                                                                                                            |  |
| MSD              | 87     | I   | Input with internal pull-down. Music serial data from external ES689/ES69x wavetable music synthesizer.                                                                                                                                                           |  |
| MCLK             | 88     | I   | Input with internal pull-down. Music serial clock from external ES689/ES69x wavetable music synthesizer.                                                                                                                                                          |  |
| SE               | 89     | I   | Input with internal pull-down. Active-high to enable serial mode, that is, it enables an exter-<br>nal DSP to control analog resources of the ES1869 through the DSP serial interface. This<br>pin is logically OR'd internally with bit 7 of mixer register 48h. |  |
| RSTB             | 90     | 0   | Inverted RESET output.                                                                                                                                                                                                                                            |  |
| GPDACK           |        | 0   | Active-low DMA acknowledge output to general-purpose device that uses DMA.                                                                                                                                                                                        |  |
| GPO1             | 91     | 0   | Output that is set high by external reset and thereafter controlled by bit 1 of port<br>Audio_Base+7h. Available to system software for power management or other applications.                                                                                   |  |
| GPDRQ            |        | Ι   | DMA request output from general-purpose device based on the PnP configuration.                                                                                                                                                                                    |  |
| GPI              | 92     | I   | General-purpose input option.                                                                                                                                                                                                                                     |  |
| GPIRQ            |        | Ι   | Interrupt request output from the general-purpose device based on the PnP configuration.                                                                                                                                                                          |  |
| A15 <sup>1</sup> | 93     | Ι   | Address input from the ISA bus.                                                                                                                                                                                                                                   |  |
| CDIRQ 0          | 93     | I   | Interrupt request input from the IDE interface.                                                                                                                                                                                                                   |  |
| A14 <sup>1</sup> | 0.4    | I   | Address input from the ISA bus.                                                                                                                                                                                                                                   |  |
| CDCSB0 º         | 94     | 0   | Active-low IDE interface chip select #0.                                                                                                                                                                                                                          |  |
| A13 <sup>1</sup> | 05     | I   | Address input from the ISA bus.                                                                                                                                                                                                                                   |  |
| CDCSB1 º         | 95     | 0   | Active-low IDE interface chip select #1.                                                                                                                                                                                                                          |  |
| A12 <sup>1</sup> | 06     | Ι   | Address input from the ISA bus.                                                                                                                                                                                                                                   |  |
| CDENBL 0         | 96     | 0   | Active-low IDE data bus transceiver enable.                                                                                                                                                                                                                       |  |

0: Pins enabled by MODE = 0 (pin 60). 1: Pins enabled by MODE = 1 (pin 60).




FUNCTIONAL DESCRIPTION

## FUNCTIONAL DESCRIPTION

This section shows the overall structure of the ES1869 and discusses its major functional subunits.

The major subunits of the ES1869 are shown in Figure 4 and described briefly in the following paragraphs.



<sup>\*\* 3-</sup>D Processor uses Spatializer <sup>©</sup> VBX<sup>™</sup> 3-D technology provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc.

Figure 4 ES1869 Block Diagram





## **Digital Subsystems**

- **RISC microcontroller** game-compatible audio functions are performed by an embedded microcontroller.
- **Oscillator** circuitry to support an external crystal.
- **ROM and RAM** firmware ROM and data RAM to the embedded microcontroller.
- **FIFO** RAM for a 256-byte FIFO data buffer for use with the first audio channel and RAM for a 64-byte FIFO data buffer for use with the second audio channel.
- **ISA bus interface** provides interface to ISA bus address, data, and control signals.
- **Dual game port** integrated dual game port for two joysticks.
- MPU-401 serial port asynchronous serial port for MIDI devices such as a wavetable synthesizer or a music keyboard input.
- Wavetable serial port serial port connection from the output of an ES689 or ES69x that eliminates the requirements for an external DAC.
- **DSP serial port** interface to an optional external DSP for control of the CODEC.
- I<sup>2</sup>S Zoom Video interface supports sample rates up to 48 kHz for MPEG audio.
- **ESFM music synthesizer** high-quality, OPL3 superset FM synthesizer with 20 voices.
- Hardware volume control 3 pushbutton inputs with internal pull-up devices for up/down/mute that can be used to adjust the master volume control.

A software-selectable option allows the mute input to be omitted. The mute input is defined as the state when both up and down inputs are low. By default, this feature is disabled.

## Analog Subsystems

- Record and Playback Mixers seven input stereo mixers. Each input has independent left and right 4-bit volume control:
  - Line In
  - Mic In
  - Aux A (CD-audio)
  - Aux B (or FDXI)
  - Digitized audio (wave files)
  - FM / ES689/ES69x / I2S ZV music DAC
  - MONO\_IN/MONO\_OUT
- 16-Bit stereo CODEC for audio record and playback of the first audio channel.
- **16-Bit stereo system DAC** for audio playback of the second audio channel.
- **16-Bit stereo music DAC** for ESFM<sup>™</sup>, external wavetable synthesizer, or IIS MPEG audio.
- 1-Bit DAC for PC speaker digital input.
- 3-D Processor a 3-D processor using Spatializer<sup>®</sup> VBX<sup>™</sup> stereo 3-D audio effects technology, provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc.
- Record source and input volume control input source and volume control for recording. The recording source can be selected from one of four choices:
  - Line In
  - Mic In
  - Aux A (CD-audio)
  - Mixer (playback or record)
- **Mixer source** determines which mixer is used for the record source, either the playback or record mixer.
- Output volume and mute control The master volume is controlled either by programmed I/O or by volume control switch inputs. The master volume supports 6 bits per channel plus mute.
- Reference generator analog reference voltage generator.
- PC speaker volume control The PC speaker is supported with a 1-bit DAC with volume control. The analog output pin PCSPKO is intended to be externally mixed at the external amplifier.
- Filter switched capacitor low-pass filter.
- General purpose I/O outputs available to system software for power management or other applications.
- Pre-amp 26 dB microphone pre-amplifier.



## MIXER SCHEMATIC BLOCK DIAGRAM

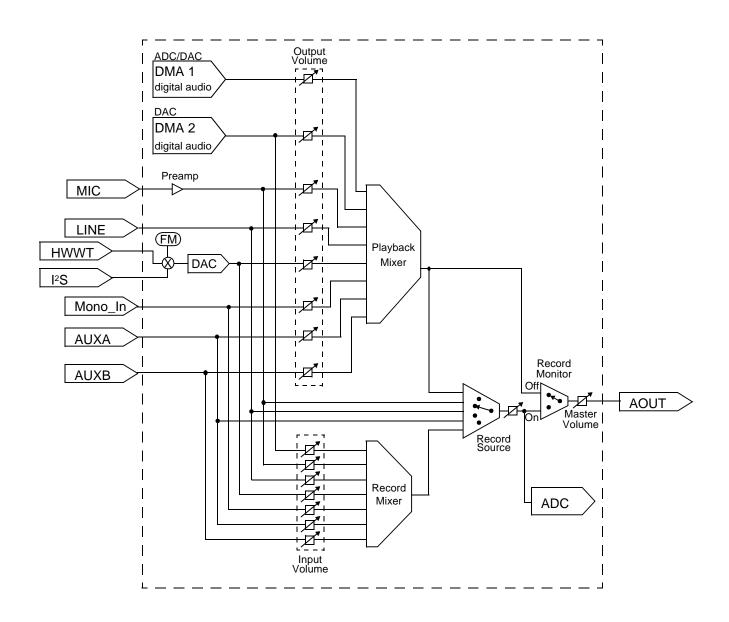



Figure 5 ES1869 Mixer Schematic Block Diagram



## **BUS INTERFACING**

This section discusses interfacing to the PC bus, and items relating to configuration for the bus.

Table 1 shows the pins used to interface the ES1869 to the ISA bus.

Table 1 ISA Bus Interface Pins

| Pins       | Descriptions                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A[15:12]   | Dual-purpose pins. A[15:12] are ISA bus address inputs.                                                                                                                                                                                                                                                                                                |
| A[11:0]    | ISA bus address inputs.                                                                                                                                                                                                                                                                                                                                |
| AEN        | ISA active-low address enable.                                                                                                                                                                                                                                                                                                                         |
| D[7:0]     | ISA bidirectional data bus.                                                                                                                                                                                                                                                                                                                            |
| DRQD       | Dual-purpose pin. DRQD is a tri-state output. Optional 16-bit DMA request for IDE interface.                                                                                                                                                                                                                                                           |
| DACKBD     | Dual-purpose pin. DACKBD is an optional 16-bit DMA acknowledge for IDE interface.                                                                                                                                                                                                                                                                      |
| DRQ(A-C)   | Three (A, B, C) active-high DMA requests to the ISA bus. Unselected DRQ outputs are high-impedance. When DMA is not active, the selected DRQ output has a pull-down device that holds the DRQ line inactive unless another device that shares the same DRQ line can source enough current to make the DRQ line active. DRQs are software configurable. |
| DACKB(A-C) | Three (A, B, C) active-low DMA acknowledge inputs.                                                                                                                                                                                                                                                                                                     |
| IRQ(A-F)   | Six (A, B, C, D, E, F) active-high interrupt requests to the ISA bus. Unselected IRQ outputs are high-impedance. IRQs are software configurable.                                                                                                                                                                                                       |
| IORB       | ISA active-low read strobe.                                                                                                                                                                                                                                                                                                                            |
| IOWB       | ISA active-low write strobe.                                                                                                                                                                                                                                                                                                                           |
| RESET      | Active-high. Reset from ISA bus.                                                                                                                                                                                                                                                                                                                       |

12

DIGITAL AUDIO

## **DIGITAL AUDIO**

The ES1869 incorporates two digital audio channels. There are three sources of DMA requests and three targets for DMA acknowledge:

- Audio 1 The first audio channel. This channel is used for Sound Blaster Pro compatible DMA, Extended mode DMA, and programmed I/O. It can be used for either record or playback. Ideally, this channel should be assigned to ISA channel 1.
- Audio 2 The second audio channel. This channel is used for audio playback in full-duplex mode. This channel can be mapped to any of the three 8-bit ISA DMA channels: 0,1, or 3.
- External GPO1 can be assigned to be a DMA acknowledge output, GPI can be used as a DMA request input from an external device; either CD-ROM, Modem, or general-purpose device. This channel can be mapped to any of the four DRQ/DACK pairs.

The three DMA sources are mapped to the four DMA pin pairs by Plug and Play (PnP) registers. Also, the four DMA pin pairs are assigned ISA DMA channel numbers by Vendor-Defined Card-Level registers 23h and 24h. At least two of the four pin pairs must be assigned to 8-bit ISA DMA channels (0,1, or 3). The other one or two of the four pin pairs can be assigned to one of the 16-bit ISA DMA channels (5, 6, or 7) for use by the external DMA source.

In order for a DRQ output pin to be *driving* (as opposed to *high-impedance*), two conditions must be met:

- The PnP register for the DMA of a given device must match the ISA DMA channel number of the pin.
- The given device must be activated; that is, bit 0 of PnP register 30h must be high.

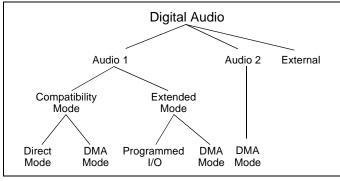



Figure 6 Data Transfer Modes

## Programming DMA Transfers

Programming data transfers can be complicated with the ES1869. Both Compatibility and Extended modes offer a variety of modes for conducting transfers. The commands

to enable the different transfers vary depending on which DMA channel and which mode (Compatibility or Extended) is used.

The biggest difference in available data transfer modes is between audio channel 1 and audio channel 2. This is illustrated in Figure 6. Audio 2 only allows for DMA mode. Audio 1 allows for Direct mode and DMA mode when using Compatibility mode, and for programmed I/O and DMA mode when using Extended mode.

## **Data Formats**

See "Data Formats" on page 44.

### DMA Transfers in Compatibility Mode

The first audio channel is programmed using standard Sound Blaster compatible commands. These commands are written to the chip through port Audio\_Base+Ch.

When programming the first audio channel for transfers, one of the following modes can be used:

- Direct mode
  - DMA modes
    - Normal
    - Auto-Initialize

In addition, both DMA Normal mode and DMA Auto-Initialize mode can use a special High-Speed mode.

### **Direct Mode**

In Direct mode, timing for DMA transfers is handled by the application program. For example, the system timer can be reprogrammed to generate interrupts at the desired sample rate. At each system timer interrupt, the command 10h, 11h, 20h, or 21h is issued followed by the sample. Polling of the Write-Buffer-Available flag (Audio\_Base+Ch [bit 7]) is required before writing the command and between writing the command and the data.

**NOTE:** The switched capacitor filter is initialized by reset for an intended sample rate of 8 kHz. In Direct mode, the application may wish to adjust this filter appropriate to the actual sample rate. Do this by programming the timer with command 40h just as if the application were using DMA mode.

## DMA Modes

In DMA mode, the programmable timer in the ES1869 controls the rate at which samples are sent to the CODEC. The timer is programmed using command 40h, which also sets up the programmable filters inside the ES1869. The ES1869 firmware maintains an internal FIFO (32 levels for 16-bit transfers, 64 levels for 8-bit transfers) that is filled by DMA transfers and emptied by timed transfers to the DAC.



Before a DMA transfer, the application first programs the DMA controller for the desired transfer size and address, then programs the ES1869 with the same size information. At the end of the transfer, the ES1869 generates an interrupt request, indicating that the current block transfer is complete. The FIFO gives the application program sufficient time to respond to the interrupt and initiate the next block transfer.

The ES1869 supports both Normal DMA mode and Auto-Initialize DMA mode.

### Normal DMA Mode

In Normal mode DMA transfers, the DMA controller must be initialized and the ES1869 commanded for every block that is transferred.

### Auto-Initialize DMA Mode

In Auto-Initialize mode, the DMA transfer is continuous, in a circular buffer, and the ES1869 generates an interrupt for the transition between buffer halves. In this mode the DMA controller and ES1869 only need to be set up once.

### High-Speed Mode

The ES1869 supports mono 8-bit DMA transfers at a rate up to 44 kHz. Mono 16-bit transfers are supported up to a rate of 22 kHz.

The special "High-Speed mode" allows 8-bit sampling up to 44 kHz for ADC, using commands 98h (auto-initialize) and 99h (normal). No automatic gain control (AGC) is performed. The input volume is controlled with command DDh.

## DMA Transfers in Extended Mode

The first audio channel is programmed using the controller registers internal to the ES1869. The commands written to the controller registers are written to the chip through port Audio\_Base+Ch.

When programming the first audio channel for transfers, one of the following modes can be used:

- Programmed I/O
- DMA modes
  - Normal (Single or Demand transfer)
  - Auto-Initialize (Single or Demand transfer)

In addition, both DMA normal mode and DMA autoinitialize mode use Single transfer or Demand transfer modes.

### Programmed I/O

For some applications, DMA mode is not suitable or available for data transfer, and it is not possible to take exclusive control of the system for DAC and ADC transfers. In these situations, use I/O block transfers within an interrupt handler. The REP OUTSB instruction of the 80x86 family transfers data from memory to an I/O port specified by the DX register. The REP INSB instruction is the complementary function. Use ES1869 port Audio\_Base+Fh for block transfers.

I/O transfers to FIFO are nearly identical to the DMA process, except that an I/O access to port Audio\_Base+Fh replaces the DMA cycle. For details about programmed I/O operation see "Extended Mode Programmed I/O Operation" on page 51.

### DMA Modes

Extended mode DMA supports both Normal and Auto-Initialize mode. In addition Normal mode and Auto-Initialize mode both support Single and Demand transfer modes.

### Single Transfer

One byte is transferred per DMA request.

### Demand Transfer

To reduce the number of DMA requests necessary to make a transfer, two or four bytes are transferred per DMA request (DRQ). Using Demand transfer enables multiple DMA acknowledges for each DMA request.

For a description of DMA mode including Normal DMA mode and Auto-Initialize DMA mode see "DMA Modes" on page 13.

### Extended Mode Audio 1 Controller Registers

The following registers control operation of the first audio channel in Extended mode:

Table 2 Extended Mode Audio 1 Controller Registers

| Address | Name                                               |
|---------|----------------------------------------------------|
| A1h     | Audio 1 Sample Rate Generator register             |
| A2h     | Audio 1 Filter Clock Divider register              |
| A4h     | Audio 1 Transfer Count Reload register – low byte  |
| A5h     | Audio 1 Transfer Count Reload register – high byte |
| B1h     | Legacy Audio Interrupt Control register            |
| B2h     | Audio 1 DRQ Control register                       |
| B4h     | Input Volume Control register                      |
| B5h     | Audio 1 DAC Direct Access register – low byte      |
| B6h     | Audio 1 DAC Direct Access register – high byte     |
| B7h     | Audio 1 Control 1 register                         |
| B8h     | Audio 1 Control 2 register                         |
| B9h     | Audio 1 Transfer Type register                     |

## Data Transfers Using the Second Audio Channel

The second audio channel is programmed using mixer registers 70h through 7Dh. The commands written to the mixer registers are written to the chip through ports Audio\_Base+4h and Audio\_Base+5h.

14

**DIGITAL AUDIO** 



DMA mode is used when programming the second audio channel for transfers:

- DMA modes
  - Normal (Single or Demand transfer)
  - Auto-Initialize (Single or Demand transfer)

In addition, both DMA Normal mode and DMA Auto-Initialize mode use Single or Demand transfer modes.

### **DMA Modes**

DMA under the second audio channel supports both Normal and Auto-Initialize mode. In addition, Normal mode and Auto-Initialize mode both support Single and Demand transfer modes.

For a description of DMA mode including Normal DMA mode and Auto-Initialize DMA mode, see "DMA Modes" on page 13.

For a description of Single and Demand transfer modes, see "DMA Modes" on page 14.

### Audio 2 Related Mixer Registers

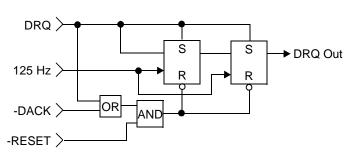
The following registers control DMA operations for the second audio channel:

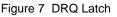
Table 3 Audio 2 Related Mixer Registers

| Address | Name                                               |
|---------|----------------------------------------------------|
| 70h     | Audio 2 Sample Rate register                       |
| 71h     | Audio 2 Mode register                              |
| 72h     | Audio 2 Filter Clock Rate register                 |
| 74h     | Audio 2 Transfer Count Reload register - low byte  |
| 76h     | Audio 2 Transfer Count Reload register – high byte |
| 78h     | Audio 2 Control 1 register                         |
| 7Ah     | Audio 2 Control 2 register                         |
| 7Ch     | Audio 2 DAC Volume Control register                |

## External DMA Sharing with Audio DMA

It is possible for an external DMA device to share a DMA channel with audio DMA if they do not operate at the same time, and if the respective Windows drivers can communicate with each other. In this case, the external DMA device does not request an audio channel in its resource data. Instead, the Windows driver writes to the PnP DMA register of the appropriate device to assign it to the same DMA channel as one of the two audio channels.


Bits 4:2 of Vendor-Defined Card-Level register 26h can be used to mask any of the three DMA sources (audio 1, audio 2, and external). Use masking when DMA channels are shared to be sure that only one device has access to a given DMA channel at one time.


## **DRQ Latch Feature**

DRQ latching is enabled when bit 7 of PnP Vendor-Defined Card-Level register 25h is high.

If this feature is enabled, each of the four audio DRQs is latched high until one of the following occurs:

- A DACK low pulse occurs while DRQ is low or goes low due to a DACK pulse.
- A hardware reset occurs.
- 8-16 milliseconds elapse while DRQ is low.





## First DMA Channel CODEC

The CODEC of the first audio channel cannot perform stereo DAC and ADC simultaneously. It can either be a stereo DAC, a stereo ADC, or a mono CODEC. After reset, the CODEC is set up for DAC operations. Any ADC command causes a switch to the ADC "direction," and any subsequent DAC command switches the converter back to the DAC "direction."

The DAC output is filtered and sent to the mixer. After reset, input to the mixer from the first audio channel DAC is muted to prevent pops. The ES1869 maintains a status flag to determine if the input to the mixer from the first audio channel DAC is enabled or disabled. Command D8h returns the status of the flag (0h=disabled and FFh=enabled). Use command D1h to enable input to the mixer from the first audio channel DAC and command D3h to disable the input.

To play a new sound without resetting beforehand, when the status of the analog circuits is not clear, mute the input to the mixer with command D3h, then set up DAC direction and level using the direct-to-DAC command:

10h + 80h

Wait 25 milliseconds for the analog circuitry to settle before enabling the voice channel with command D1h.



Pop sounds may still occur if the DAC level was left at a value other than mid-level (code 80h on an 8-bit scale) by the previous play operation. To prevent this, always finish a DAC transfer with a command to set the DAC level to mid-range:

10h + 80h

16

**INTERRUPTS** 



## **INTERRUPTS**

There are seven interrupt sources in the ES1869, shown in Table 4.

### Table 4 ES1869 Interrupt Sources

| Interrupt Source | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audio 1          | An interrupt used for the first DMA channel (Sound Blaster compatible DMA, Extended mode DMA, and Extended mode programmed I/O), as well as Sound Blaster-compatible MIDI receive. Controller register B1h controls use of this interrupt for Extended mode DMA and programmed I/O. This interrupt request is cleared by hardware or software reset, or an I/O read from port Audio_Base+0Eh. The interrupt request can be polled by reading from port Audio_Base+0Ch. The Audio 1 interrupt is assigned to an interrupt channel by PnP register 70h of LDN 1.                                                                                                                                                       |
| Audio 2          | An optional interrupt for the second DMA channel. The ES1869 can operate in full-duplex mode using two DMA channels. However, since the second DMA channel must share the same sample rate as the first DMA channel, it is not necessary to use a separate interrupt for the second DMA channel. The Audio 2 interrupt is masked by bit 6 of mixer register 7Ah. It can be polled and cleared by reading or writing bit 7 of register 7Ah. This interrupt is assigned to an interrupt channel by PnP register 72h of LDN 1.                                                                                                                                                                                          |
| Hardware Volume  | Hardware volume activity interrupt. This interrupt occurs when one of the three hardware volume controls changes state. Bit 1 of mixer register 64h is the mask bit for this interrupt. The interrupt request can be polled by reading bit 3 of register 64h. The interrupt request is cleared by writing any value to register 66h. The Hardware Volume interrupt is assigned to an interrupt channel by PnP register 27h. Typically this interrupt, if used, is shared with an audio interrupt.                                                                                                                                                                                                                    |
| MPU-401          | The MPU-401 interrupt occurs when a MIDI byte is received. It goes low when a byte is read from the MIDI FIFO and goes high again quickly if there are additional bytes in the FIFO. The interrupt status is the same as the Read-Data-Available status flag in the MPU-401 status register. The MPU-401 interrupt is masked by bit 6 of mixer register 64h. This interrupt is assigned to an interrupt channel in one of two ways. If the MPU-401 is part of the audio device, then PnP register 28h is used to assign the MPU-401 interrupt. If the MPU-401 is its own logical device, it can also be assigned to an interrupt by PnP register 70h of LDN 3. Both these methods access the same physical register. |
| CD-ROM           | The source of the CD-ROM interrupt is the input pin CDIRQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Modem            | The source of the Modem interrupt is the input pin MMIRQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| General-Purpose  | The source of the General-Purpose interrupt is the input pin GPI. If GPI is used for a DMA request for the CD-ROM, Modem, or General-Purpose device, then this pin cannot be used as a general-purpose device interrupt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Interrupt sources are mapped to one of the six interrupt output pins through the PnP registers. Zero, one, or more interrupts can map to any given pin. Each PnP pin is assigned to an ISA interrupt channel number by Vendor-Defined Card-Level PnP registers 20h, 21h, and 22h. These registers are automatically loaded from the 8-byte header in the PnP configuration data.

Each interrupt pin can be in either an active or high-impedance state.

If a given interrupt pin has one or more sources assigned to it, and one or more of those sources is activated (register 30h, bit 0), then the interrupt pin is active; that is, it always drives high or low. An exception is the Modem interrupt, which can be deactivated if input MMIEB is high or if the Modem device is not active. Each interrupt also has one or more mask bits that are AND'ed with the interrupt request.

## Interrupt Status Register

Port Config\_Base+6h of the configuration device can be read to quickly find out which ES1869 interrupt sources are active. The bits are:

| Table 5 | Interrupt Status | Bits in Config_ | _Base+6h |
|---------|------------------|-----------------|----------|
|---------|------------------|-----------------|----------|

| Bit | Description                                                               |
|-----|---------------------------------------------------------------------------|
| 0   | Audio 1 interrupt request                                                 |
| 1   | Audio 2 interrupt request AND'ed with bit 6 of mixer register 7Ah         |
| 2   | Hardware volume interrupt request AND'ed with bit 1 of mixer register 64h |
| 3   | MPU-401 receive interrupt request AND'ed with bit 6 of mixer register 64h |
| 4   | CDIRQ input pin                                                           |
| 5   | MMIRQ input pin AND'ed with inverse of MMIEB input                        |
| 6   | GPI input pin                                                             |





## Interrupt Mask Register

Port Config\_Base+7h can be used to mask any of the seven interrupt sources.

The mask bits can be used to force the interrupt source to be zero, without putting the interrupt pin in a highimpedance state. Each bit is AND'ed with the corresponding interrupt source. This register is set to all ones by hardware reset.

The Interrupt Status register (ISR) is not affected by the state of the Interrupt Mask register (IMR). That is, the ISR reflects the status of the interrupt request lines before being masked by the IMR.

The IMR is useful when interrupts are shared. For example, assume that Audio 1, Audio 2, Hardware Volume, and MPU-401 all share the same interrupt in Windows. When returning from Windows to DOS, the Hardware Volume, MPU-401, and Audio 2 interrupts can be masked by setting the appropriate bits to 0.

A second use is within an interrupt handler. The first thing the interrupt handler can do is mask all the interrupt sources mapped to the interrupt handler. Then, the ISR can be polled to decide which sources to process. Just before exiting the interrupt handler, the IMR can be restored. If an unprocessed interrupt remains active, it generates an interrupt request because the interrupt pin was low during the masked period and then went high when the interrupt sources were unmasked. Also, while the interrupts are masked, the individual interrupt sources can change state any number of times without generating a false interrupt request.

### Sharing Interrupts

Plug and Play does not allow sharing of interrupts in its resource assignment decision making. If a device wants to share an interrupt with another device that has been assigned an interrupt by PnP, the first device cannot request an interrupt for itself.

A logical device that supports interrupts can be assigned to an interrupt after the PnP sequence by the Windows driver. Refer to "Bypass Key" on page 28 for information on the PnP sequence. In this case, it would typically be forced to share an interrupt with the first audio interrupt. For all but two cases, this is done simply by programming the appropriate PnP register (70h or 72h) for the selected device. Below are the two exceptions:

- The hardware volume interrupt. This interrupt source can be assigned to an interrupt through Vendor-Defined Card-Level register 27h.
- The MPU-401 interrupt. This device is either part of the audio device or its own logical device. If it is part of the audio device, the interrupt can be assigned by writing to Vendor-Defined Card-Level register 28h. If this device is its own logical device, it is assigned an interrupt by either register 28h or register 70h of LDN 3.

18

PERIPHERAL INTERFACING



## PERIPHERAL INTERFACING

## I<sup>2</sup>S Serial Interface

Three input pins, IISDATA, IISCLK, and IISLR, are used for a serial interface between an external device and a stereo DAC within the ES1869. These inputs can be left floating or connected to ground if the serial interface is not used.

Typical applications of the I<sup>2</sup>S serial interface are MPEG audio or digital CD audio.

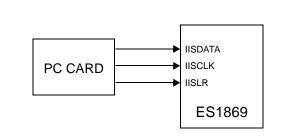



Figure 8 I<sup>2</sup>S Implementation in ES1869

Table 6 identifies the three pins in the I<sup>2</sup>S interface.

| Pin     | Description                                                                  |
|---------|------------------------------------------------------------------------------|
| IISLR   | Left/right strobe for I <sup>2</sup> S interface. Input with pull-<br>down.  |
| IISDATA | Serial data for I <sup>2</sup> S interface. Input with pull-down.            |
| IISCLK  | Serial shift clock for I <sup>2</sup> S interface. Input with pull-<br>down. |

### I<sup>2</sup>S Serial Interface Timing

Within the ES1869, IISLR and IISDATA are sampled on the rising edge of IISCLK. See Figure 31 and Figure 32 for detailed I<sup>2</sup>S timing.

## Wavetable Interface

The ES1869 contains a synchronous serial interface for connection to an ES689/ES69x wavetable music synthesizer. Table 7 identifies pins in the wavetable interface.

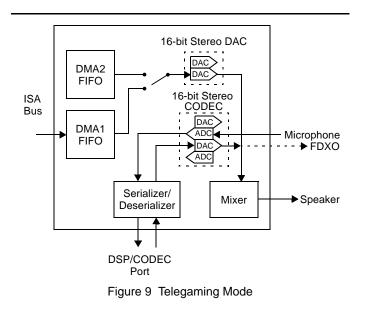
| Table 7 | Wavetable Interface Pins |
|---------|--------------------------|
|---------|--------------------------|

| Pin  | Description                                                                                                                                                                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCLK | Serial clock from external ES689/ES69x music syn-<br>thesizer.                                                                                                                                                                                               |
| MSD  | Serial data from external ES689/ES69x music syn-<br>thesizer. When both MCLK and MSD are active, the<br>stereo DACs that are normally used by the FM syn-<br>thesizer are acquired for use by the external ES689/<br>ES69x. The normal FM output is blocked. |

## **DSP** Interface

The ES1869 contains a synchronous serial interface for connection to a DSP serial interface. The typical application for this interface is a speakerphone.

Table 8 identifies pins in the DSP interface.


| Table 8 | DSP | Interface | Pins |
|---------|-----|-----------|------|
|---------|-----|-----------|------|

| Pin  | Description                                                                                                                                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SE   | Active-high signal from an external DSP to enable serial mode.                                                                                                                                                            |
| DCLK | Data clock. The rate can vary, but a typical value is 2.048 MHz (8 kHz x 256).                                                                                                                                            |
| DX   | Data transmit. Active output when data is being trans-<br>mitted serially from the ES1869, otherwise high-<br>impedance.                                                                                                  |
| DR   | Serial data input.                                                                                                                                                                                                        |
| FSX  | Frame sync transmit. FSX is either active-high or<br>active-low based on bit 3 of mixer register 48h. The<br>FSX pulse is a request from the external DSP to begin<br>transmission of 8 or 16 bits of data out of pin DX. |
| FSR  | Frame sync receive. FSR is either active-high or active-low, based on bit 3 of mixer register 48h. The FSR pulse signals the arrival of 8 or 16 bits of data to pin DR.                                                   |

## **DSP Operating Modes**

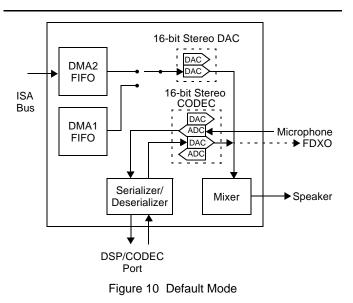
There are two DSP data transfer modes for the ES1869. The state of a single switch internal to the ES1869 determines which mode is enabled. This switch can route the first audio channel to the second audio channel DAC. When the first audio channel is routed to the second audio channel DAC, Telegaming mode is enabled. Otherwise the DSP is operating in its default mode.





### **Telegaming Mode**

This mode is enabled when two conditions are present:


- 1. The DSP serial port must be enabled (i.e., either bit 7 of mixer register 48h is high or the input pin SE is high).
- 2. Bit 1 of mixer register 48h is high. This bit enables Telegaming mode.

In previous chips, when the DSP serial port is enabled, the Audio 1 CODEC is unavailable for use by the first audio channel. This means digital audio for Sound Blaster Pro compatible games is muted. Sound Blaster can use only the first audio channel for digital audio. The Audio 1 CODEC is used by the DSP.

In Telegaming mode, the first audio channel can be switched over to the Audio 2 DAC. Internally, the first audio channel is routed to the second audio channel DAC and the second audio channel has no function. In addition, the second audio channel mixer volume control is slaved to the first channel mixer volume control.

### **Default Mode**

The default mode operates just like Telegaming mode except that data from the first audio channel cannot be heard. Data sent through the second audio channel can be mixed as in Telegaming mode.



### No Acoustic Echo Cancellation

The DSP cannot perform acoustic echo cancellation in either mode. Because the audio from the host does not pass directly through the DSP, there is no way for the DSP to compensate for acoustic echo. Therefore, using a headset for either the microphone or speakers or both is recommended.

### **DSP Digital Audio Playback**

There are two choices for mixing the DSP digital audio playback data with other audio sources. The audio data can be mixed in the ES1869's internal playback mixer or externally to the ES1869.

### Mixing Internal to the ES1869

The DSP digital audio playback can be mixed within the ES1869 playback mixer. To select this method, set the Output Signal Control bits of the mixer register 44h for mixer output. To do this, program bits 6:4 of mixer register 44h to 1, 0, and 0, respectively. The volume of the DSP digital audio playback is controlled by the Audio 1 Play Volume register (14h).

**NOTE:** In Telegaming mode, register 14h also controls the game-compatible first audio channel digital audio playback. If independent mixer volume control of the game-compatible and DSP digital audio data is necessary, use the second method.

### Mixing External to the ES1869

The second method is to use the FDXO output pin and mix the DSP digital audio playback and the game-compatible digital audio playback in an external audio mixer. To select this method, set the Output Signal Control bits of mixer register 44h for mixer output except DAC playback. To do this, program bits 6:4 of register 44h to 1, 0, and 1,

PERIPHERAL INTERFACING



respectively. In addition, set bit 1 of Mixer register 46h high to enable FDXO as an output when DSP serial mode is enabled.

The volume of the DSP digital audio playback is controlled within the DSP by scaling the data.

## **Serial Data Format**

Figure 11 shows the format for serial data used with the DSP serial interface.

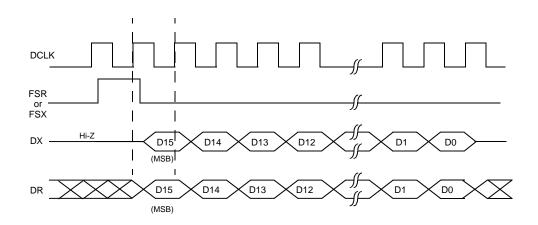



Figure 11 16-Bit Data, Positive Sync Pulse



## **Modem Interface**

The ES1869 allows a direct interface to an external modem. There are four pins dedicated for an external modem. Table 9 identifies pins in the Modem interface.

| Table 9 External Modem Interface Pins | Table 9 | External | Modem | Interface | Pins |
|---------------------------------------|---------|----------|-------|-----------|------|
|---------------------------------------|---------|----------|-------|-----------|------|

| Pin   | Description                                                                                                                                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MMCSB | Output from the ES1869 to an external modem chip<br>select, active-low. The address space is determined<br>by the PnP configuration. The Modem device uses<br>eight consecutive addresses, with the base<br>address, typically one of the COM ports. |
| MMIRQ | Interrupt request from the Modem device. This signal is mapped to an IRQ output on the ES1869, based on the PnP configuration.                                                                                                                       |
| MMIEB | Modem interrupt enable input. Active-low when the<br>Modem interrupt is enabled. High when the Modem<br>interrupt request is disabled. Generated from the<br>Modem UART.                                                                             |
| GPCS  | User-defined general-purpose chip select output.<br>If selected by the PnP logic and based on the PnP<br>configuration.                                                                                                                              |

## **Modem Operating Modes**

If the modem DSP also requires a DMA channel, the GPI/ GPO1 pins can be used for DRQ/-DACK from the modem.

The modem can also connect to the ES1869 through the DSP serial interface. This allows the modem to set the sample rate for both chips and have access to the microphone and speaker for speakerphone or voice-overdata applications. DSP determines the sample rate of the serial link by generating FSR/FSX pulses.

Figure 12 shows a typical modem interface application, a speakerphone or modem with voice-over-data.




Figure 12 Speakerphone or Modem w/ Voice-Over-Data

## **IDE CD-ROM Interface**

The ES1869 allows a direct interface to an IDE CD-ROM drive. There are four pins dedicated for an IDE CD-ROM interface. Table 10 identifies these pins.

Table 10 IDE CD-ROM Interface Pins

| Pin    | Description                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CDIRQ  | Interrupt request from CD-ROM. Internally routed to one of the six IRQ ISA outputs (A-F).                                                                                                        |
| CDCSB0 | Active-low decode output for eight command block registers. 24 mA driver.                                                                                                                        |
| CDCSB1 | Active-low decode output for two control block reg-<br>isters. 24 mA driver.                                                                                                                     |
| CDENBL | Active-low decode output for external 74LS245<br>transceiver that buffers the least 8 bits of the ISA<br>data bus. This pin is active-low when CDCSB0,<br>CDCSB1, or CD DMA -DACK is active-low. |

In most cases, the IDE interface does not use DMA. If it *must* use DMA, then the GPO1/GPI pair (pins 91 and 92) can be used for this purpose. In this case, these pins would not be available for other external devices such as a modem/audio processor. Also, typically only one of the 4 DRQ/DACK pairs of the ES1869 would be connected to a 16-bit DMA channel. This does not give the PnP system any choice about assigning the CD DMA channel.

It is not recommended to use DMA for the CD-ROM.

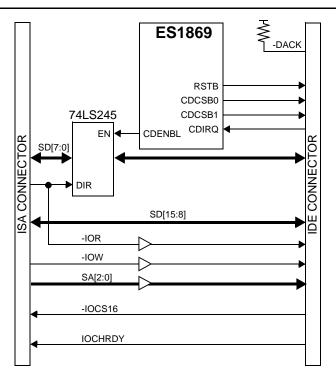



Figure 13 IDE Interface – Typical Application

PERIPHERAL INTERFACING



## **General-Purpose I/O Device**

In addition to modem and CD-ROM interfaces, the ES1869 Plug and Play logic supports one generalpurpose I/O device. The GPO0 output can be configured to provide an active-high chip-select output when this device is accessed. The General-Purpose device can decode 1, 2, 4, 8, or 16 consecutive addresses.

It is also possible to use GPI/GPO1 as a DMA channel for the General-Purpose device if these pins are not used for the Modem or CD-ROM device.

The GPI pin can also be used as an interrupt source for the General-Purpose device if the pin is not otherwise used.

### Joystick / MPU-401 Interface

### MPU-401 UART Mode

There are two separate MIDI interfaces in the ES1869. The Sound Blaster compatible command set and a MPU-401 "UART mode" compatible serial port. MPU-401 is a superior method of MIDI serial I/O because it does not interfere with DAC or ADC Sound Blaster commands. Both methods of serial I/O share the same MSI and MSO pins. The MPU-401 interface consists of separate 8-byte FIFOs for receive and transmit.

By default after hardware reset, the MPU-401 interface is disabled. It must be configured using PnP register 30h of LDN3, which is described in "LDN 3: MPU-401 Device" on page 34.

MPU-401 requires an interrupt channel for MIDI receive. This interrupt should be selected using PnP register 70h of LDN3. It should be different than the interrupt selected for audio DMA interrupts.

If MPU-401 is enabled, a low-level signal on pin MSI prevents power-down and causes automatic wake-up if the ES1869 is powered down. Likewise, power-down is prevented if a byte is currently being received or transmitted.

Temporarily disabling MPU-401 using PnP register 30h of LDN3 (if MPU-401 is its own device) or PnP register 30h of LDN1 (if MPU-401 is part of the audio device) acts as a reset to the FIFOs.

## Joystick / MIDI External Interface

The joystick portion of the ES1869 reference design is identical to that on a standard PC game control adaptor or game port. The PC compatible joystick can be connected to a 15-pin D-sub connector. It supports all standard PC joystick-compatible software. If the system already has a game card or port, either remove the game card or disable

the joystick port in the reference design by removing the joystick enable jumper. Disabling the joystick port does not affect its use as a MIDI port.

If multiple joysticks are required, use a joystick conversion cable. This cable uses a 15-pin D-sub male connector on one end, and two 15-pin D-sub female connectors on the other end. All signals on this cable have direct pin-to-pin connection, except for pins 12 and 15. On the male connector, pins 12 and 15 should be left without connected to pin 8, and pin 12 is internally connected to pin 4. The dual joystick and MIDI port take up only one slot in the system, leaving room for other cards. Figure 14 shows the dual joystick/MIDI connector configuration.

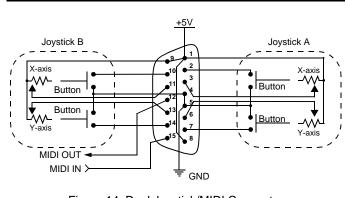



Figure 14 Dual Joystick/MIDI Connector

Figure 15 shows the MIDI serial interface adaptor from the joystick/MIDI connector.



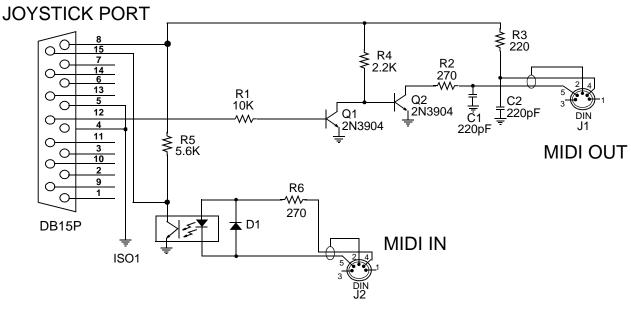



Figure 15 MIDI Serial Interface

## Serial EEPROM Interface

The ES1869 gets Plug and Play configuration data from an internal masked ROM or an external EEPROM device. The external EEPROM device is 512K x 8-bit in size.

The EEPROM interface is shared with the hardware volume controls. When the EEPROM interface is active, the volume controls are deactivated. See Figure 16.

The host processor can read or write the EEPROM, allowing the EEPROM to be reprogrammed or initially programmed during production test.

Pin 20, when used as SECS, is an input during reset. If an EEPROM exists and needs to be used, pull this pin high externally. Otherwise, pull it low, to force the use of the internal ROM.

Depending on the value of pin 20 and the operating mode selected for this pin, either the internal mask-ROM or the external EEPROM device is used.

| SECS/PSEL |              |         |                |
|-----------|--------------|---------|----------------|
| 0         | Internal ROM |         |                |
| 1         | 93LC66       | 512 x 8 | 9 address bits |

### **EEPROM ROM Format**

| 'A5' Syne   | c Byte             |
|-------------|--------------------|
| IRQB IRQA   | Mapping for IRQB/A |
| IRQD IRQC   | Mapping for IRQD/C |
| IRQF IRQE   | Mapping for IRQF/E |
| DRQB DRQA   | Mapping for DRQB/A |
| DRQD DRQC   | Mapping for DRQD/C |
| PNP Reg 25h | Miscellaneous      |
| PNP Reg 26h | Miscellaneous      |

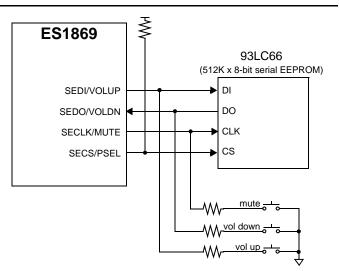



Figure 16 Serial EEPROM – Typical Application

PERIPHERAL INTERFACING



## MONO\_IN and MONO\_OUT

MONO\_IN is a line-level analog input. MONO\_IN is an input to the playback mixer and the record mixer. The mixer volumes are controlled by mixer registers 6Dh (playback) and 6Fh (record).

Alternately, MONO\_IN can be mixed with AOUT\_L and AOUT\_R after the master volume stage. Bit 0 of mixer register 7Dh, when high, enables MONO\_IN to be mixed directly (unity gain) with AOUT\_L and AOUT\_R.

A third use of MONO\_IN is as an input to the left channel ADC in full-duplex DSP serial port mode. In this application, MONO\_IN is typically a line-level microphone input (external preamp). MONO\_IN can be selected as an input in serial port mode by setting bits 6 and 7 of mixer register 42h high. MONO\_IN as an ADC input bypasses the recording source select and record volume stages. MONO\_IN directly drives the left channel switchedcapacitor filter. The output of the switched-capacitor filter is FOUT\_L, which is AC-coupled externally to CIN\_L, the left channel ADC input.

MONO\_OUT is a line-level mono output. During powerdown or during opamp calibration, MONO\_OUT is held at CMR (as are AOUT\_L and AOUT\_R) by an internal, highimpedance resistor divider. MONO\_OUT can be selected from among four sources by bits 2 and 1 of mixer register 7Dh.

| Mixer Reg | gister 7Dh | MONO OUT Source                                     |  |  |  |
|-----------|------------|-----------------------------------------------------|--|--|--|
| Bit 2     | Bit 1      |                                                     |  |  |  |
| 0         | 0          | Mute (CMR)                                          |  |  |  |
| 0         | 1          | First channel filter output<br>(actually CIN_R pin) |  |  |  |
| 1         | 0          | Second channel DAC, right channel                   |  |  |  |
| 1         | 1          | Mono mix of record level stage outputs              |  |  |  |

Normally bits 2:1 are both zero, so that MONO\_OUT is muted.

When bit 2 is 0 and bit 1 is 1, MONO\_OUT is a buffered version of input pin CIN\_R. CIN\_R is typically the right channel DAC output, filtered by the first channel switched-capacitor filter. If the right channel is used for ADC, CIN\_R will be the right channel ADC input. MONO\_OUT can be used in this application as digitized audio playback through the first channel DMA, right channel DAC.

When bit 2 is 1 and bit 1 is 0, MONO\_OUT is a buffered version of the second channel, right channel DAC. In this case, the second channel DMA can play digitized audio through MONO\_OUT.

When bit 2 is 1 and bit 1 is 1, MONO\_OUT is a buffered version of a mono mix of the record level stage left and right outputs. This gives the utmost flexibility in the source or sources of MONO\_OUT. The record source select and record levels can be programmed to generate any combination of sources and volumes for MONO\_OUT.

## Spatializer<sup>®</sup> VBX<sup>™</sup> Audio Processor

The ES1869 incorporates an embedded **Spatializer®** VBX<sup>™</sup> stereo audio processor provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc. It is positioned between the output of the playback mixer and the master volume controls and it produces a wider perceived stereo effect.

The 3-D effect is enabled by register 50h bit 3. The amount of effect is controlled by directly programming 3-D Level register 52h.

## Hardware and Master Volume Control

Three external pins, VOLUP, VOLDN, and MUTE can be connected to external momentary switches to ground to implement hardware master volume controls. Pressing one of these buttons produces a low signal to one of the inputs and thereby changes the master volume.

In one mode the MUTE input can be replaced by the state where both VOLUP and VOLDN inputs are low.

The up and down buttons produce a single step change in volume when they are first pressed. If these buttons are held down, they enter a fast-scrolling mode. The single step change can be either one volume unit (.75 dB) or three volume units (2.25 dB). In scrolling mode, the step change is always one volume unit.

The three inputs have debounce circuitry within the ES1869. Hold each input low for 40 milliseconds or more for it to be recognized as a valid button press. Hold each input high for 40 milliseconds or more between button presses. A software option allows the debounce time to be reduced from 40 milliseconds to 10 microseconds.

Normally the hardware volume controls directly change the master volume registers and produce an interrupt at each change. However, the ES1869 can be programmed so that the hardware volume controls do not directly change the master volume registers. This is called "split mode", in which the hardware volume control counters are split from the master volume registers. Pressing a hardware volume control button changes the hardware volume counters and produces an interrupt. The host software can read the hardware volume counters and update the master volume registers as needed. Split mode is enabled by bit 7 of mixer register 64h.





For support of mixer master volume control, a write to mixer registers 22h or 32h translates automatically into writes to the master volume registers. Since register 22h only has 3-bit resolution per channel, and register 32h only has 4-bit resolution per channel, a translation circuit is included in the ES1869 that translates 3- or 4-bit volume values into the 6-bit volume + mute that is used in the master volume registers. Support of these mixer registers can be defeated under software control.

Reading master volume registers 22h or 32h also requires a translation circuit to translate 6-bit + mute master volumes into 3- or 4-bit master volume numbers for registers 22h or 32h.

## **PC Speaker**

The PC Speaker is supported with a 1-bit DAC with volume control. The analog output pin PCSPKO is intended to be externally mixed at the external amplifier.

### PC Speaker Volume Control

When the PCSPKI signal is high, a resistive path to analog ground is enabled. The value of the resistor is selected from among 7 choices to control the amplitude of the output signal.

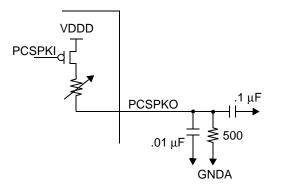



Figure 17 PC Speaker Volume Circuitry

With the external circuit shown in Figure 17, the amplitude of a square wave output on pin PCSPKO should be approximately VDDA/2 for maximum volume, i.e., the internal resistor is approximately 500 ohms ( $\pm$  30%). The other levels are relative to this amplitude as follows:

mute, -24dB, -21dB, -18dB, -15dB, -12dB, -9dB, -6dB

The purpose of the circuit, beyond volume control of the speaker, is to prevent digital noise from the PC speaker signal being mixed into the analog signal. This circuit provides a clean analog signal. The output can be either mixed with the AOUT\_L and AOUT\_R pins externally or it can be used to drive a simple transistor amplifier to drive an 8 ohm speaker dedicated to producing beeps.

26



## ANALOG DESIGN CONSIDERATIONS

This section describes design considerations related to inputs and outputs of analog signals and related pins on the chip.

## **Game Port**

The game port address 201h is decoded for timer pins TA, TB, TC, and TD, and switch pins SWA, SWB, SWC, and SWD. The MIDI serial input and output also come from the game port connector in most applications.

## **Reference Generator**

Reference generator pin CMR is shown bypassed to analog ground.

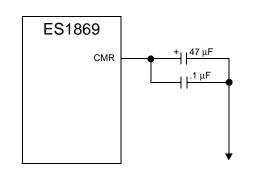



Figure 18 Reference Generator Pin Diagram

## **Switch-Capacitor Filter**

The outputs of the FOUT\_L and FOUT\_R filters must be AC-coupled to the inputs CIN\_L and CIN\_R. This provides for DC blocking and an opportunity for low-pass filtering with capacitors to analog ground at these inputs.

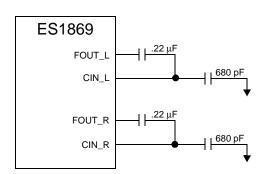



Figure 19 Switch-Capacitor Filter Pin Diagram

## Audio Inputs and Outputs

Analog inputs MIC, LINE\_L, LINE\_R, AUXA\_L, and AUXA\_R should be capacitively coupled to their respective input signals. All have pull-up resistors to CMR.

ES1869 analog outputs AOUT\_L and AOUT\_R should be AC-coupled to an amplifier, volume control potentiometer, or line-level outputs.



Figure 20 shows the configuration register set that is discussed in the following pages. As shown below, the Card-Level registers supported by the ES1869 are the Card-Control Card-Level registers at addresses 00h-07h, and the Vendor-Defined Card-Level registers at addresses 20h-2Fh. The Card-Control Card-Level register at address 07h is a pointer to the Logical Device registers supported by the ES1869 (one set of registers for each logical device on the "card"). In the ES1869, there are six devices: logical the configuration device. the audio+FM+MPU-401 device, the joystick device, the CD-ROM device, the Modem device, and a user-defined General-Purpose device.

## Card-Level Registers Log

(one set per card)

Logical Device Registers (one set per logical device on card)

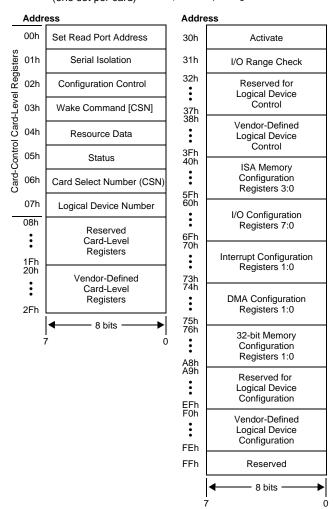



Figure 20 Configuration Register SeAccess to PnP Registers

### **Configuration Ports**

To directly access the PnP registers, and bypass the PnP sequence, write a special key sequence to port 279h that depends on bits 6:5 of PnP register 25h, and conclude with two I/O writes to 279h to set the base address of the configuration ports. The key sequence also sets the activate bit for the configuration device.

## **Bypass Key**

If PnP is not supported by the system, it is possible to bypass PnP by issuing a special "bypass key" to the ES1869 to force the configuration device to be enabled at a specific I/O address. The ES1869 must be in the "waitfor-key" Plug and Play state. The special key is 32 bytes long, written to the PnP address register (279h). Follow the bypass key immediately with two I/O writes to the PnP address register to set the low and high bytes of the address register of the configuration device. The bypass key also activates the configuration device. The address of the configuration device must be in the range 100h-FF8h, aligned on a multiple of 8. An "alias" of the audio device address can be used. For example, use E20h for the configuration device if the audio device address is at 220h.

The actual key sequence is determined by the state of bits 5 and 6 of Vendor-Defined Card-Level register 25h. These bits are both zero after reset, and are loaded from the seventh byte of the PnP ROM header (if the first byte of the header is 'A5'). The purpose of the bypass key is to handle the case where multiple instances of the ES1869 coexist in a single non-PnP system. It is recommended to try all four keys successively. The only difference between the four keys are the two least significant bits: XOR bits 1 and 0 of key #0 with bits 5 and 6 of register 25h to generate keys #1, #2, and #3.

**NOTE:** Perform the entire sequence with interrupts disabled to minimize the chance that an interrupt corrupt the sequence.

Register 25h, bits 6:5 = 0,0

66, a1, c2, f1, ea, e7, 71, aa c7, 63, 33, 1b, d, 96, db, 6d a4, 50, 28, 16, 9b, 4d, b6, c9 f4, 78, 3e, 8d, d6, fb, 7f, 3d <config\_address\_low>, <config\_address\_high>

Register 25h, bits 6:5 = 0,1

67, a0, c3, f0, eb, e6, 70, ab c6, 62, 32, 1a, c, 97, da, 6c a5, 51, 29, 17, 9a, 4c, b7, c8 f5, 79, 3f, 8c, d7, fa, 7e, 3c <config\_address\_low>, <config\_address\_high>

Register 25h, bits 6:5 = 1,0



64, a3, c0, f3, e8, e5, 73, a8 c5, 61, 31, 19, f, 94, d9, 6f a6, 52, 2a, 14, 99, 4f, b4, cb f6, 7a, 3c, 8f, d4, f9, 7d, 3f <config\_address\_low>, <config\_address\_high>

Register 25h, bits 6:5 = 1,1

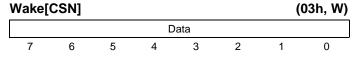
65, a2, c1, f2, e9, e4, 72, a9 c4, 60, 30, 18, e, 95, d8, 6e a7, 53, 2b, 15, 98, 4e, b5, ca f7, 7b, 3d, 8e, d5, f8, 7c, 3e <config\_address\_low>, <config\_address\_high>

**CAUTION:** When using the bypass key method of address configuration, the address cannot be reliably relocated without reissuing the bypass key. Writing directly to Logical Device Number 0 register 60h to change the configuration address is unreliable. Use the bypass key to relocate the configuration address. Use this method for the initial address configuration as well as any subsequent change in the address configuration.

## Card-Control Card-Level Registers (00h-07h)

| Set RD | Set RD_DATA Port                 |   |   |   |   |   |   |  |
|--------|----------------------------------|---|---|---|---|---|---|--|
|        | Bits 9:2 of the PnP RD_DATA port |   |   |   |   |   |   |  |
| 7      | 6                                | 5 | 4 | 2 | 2 | 1 | 0 |  |

The PnP read port can be written only when the card is in Isolation mode. It is reset low by hardware reset. It can be read only from Configuration mode. Bits 1:0 of PnP read port are always one.


| Serial | Isolatio | on |   |      |   | ( | (01h, R) |
|--------|----------|----|---|------|---|---|----------|
|        |          |    | C | Data |   |   |          |
| 7      | 6        | 5  | 4 | 3    | 2 | 1 | 0        |

Read-only in isolation state. Used to read the serial identifier during card isolation process.

| Config Control (02h, W) |   |   |   |   |           |     |     |  |  |  |  |  |
|-------------------------|---|---|---|---|-----------|-----|-----|--|--|--|--|--|
|                         |   |   |   |   | RESET_CSN | WFK | SWR |  |  |  |  |  |
| 7                       | 6 | 5 | 4 | 3 | 2         | 1   | 0   |  |  |  |  |  |

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description                                                                                               |
|-------------|-------------|-----------------------------------------------------------------------------------------------------------|
| 2           | RESET_CSN   | RESET_CSN command.<br>1 = Card's CSNs set to zero.                                                        |
| 1           | WFK         | WAIT_FOR_KEY command.<br>1 = Enter wait-for-key state.                                                    |
| 0           | SWR         | Software reset command. Does not work<br>in wait-for-key state.<br>1 = Reset config registers to default. |



If data written is 00h and it:

- matches the CSN: this card goes from Sleep mode to Isolation mode.
- does not match the CSN: this card goes from Configuration mode to Sleep mode.

If the data written is non-zero, and it:

- matches the CSN: this card goes from Sleep mode to Configuration mode.
- does not match the CSN: this card goes from Isolation mode to Sleep mode.





| Re | soui          | rce Da | ta |   |   |   |   | (04h, R) | IRQF, | IRQE |   |     |    |   | (2 | 22h, R) |
|----|---------------|--------|----|---|---|---|---|----------|-------|------|---|-----|----|---|----|---------|
|    | Resource data |        |    |   |   |   |   | IR       | QF    |      |   | IRC | ζE |   |    |         |
|    | 7             | 6      | 5  | 4 | 3 | 2 | 1 | 0        | 7     | 6    | 5 | 4   | 3  | 2 | 1  | 0       |

Returns next byte of resource data, provided the status bit in register 05h has been polled before each byte read, indicating that data is ready. Only works in Configuration mode.

| Status | Status (0 |   |          |   |   |   |        |  |  |  |
|--------|-----------|---|----------|---|---|---|--------|--|--|--|
|        |           |   | Reserved | ł |   |   | Status |  |  |  |
| 7      | 6         | 5 | 4        | 3 | 2 | 1 | 0      |  |  |  |

### **Bit Definitions:**

Bits Name Description

0 Status 1 = Ready to read resource data in register 04h. Only works in Configuration mode. 0 = Resource data not available.

| CSN |   |   |           |          |   | (06h | n, R/W) |
|-----|---|---|-----------|----------|---|------|---------|
|     |   | C | Card sele | ct numbe | r |      |         |
| 7   | 6 | 5 | 4         | 3        | 2 | 1    | 0       |

Read/write card select number. Write only works in Isolation mode. Causes transition to Configuration mode. Read only works in Configuration mode.

| LDN |   |    |           |          |    | (07h | n, R/W) |
|-----|---|----|-----------|----------|----|------|---------|
|     |   | Lo | gical dev | ice numb | er |      |         |
| 7   | 6 | 5  | 4         | 3        | 2  | 1    | 0       |

Read/write logical device number. Only works in Configuration mode.

## Vendor-Defined Card-Level Registers (20h-29h)

| IRQB, | IRQA |    |   |   |     | (  | 20h, R) |
|-------|------|----|---|---|-----|----|---------|
|       | IR   | QB |   |   | IRC | QA |         |
| 7     | 6    | 5  | 4 | 3 | 2   | 1  | 0       |

Defines IRQ number assigned to B and A pins. Loaded from Configuration ROM Header after PnP reset. Unused IRQ pins should be assigned IRQ #1.

| IRQ | D, IRQC |    |   |      |   | (2 | 21h, R) |  |
|-----|---------|----|---|------|---|----|---------|--|
|     | IR      | QD |   | IRQC |   |    |         |  |
| 7   | 6       | 5  | 4 | 3    | 2 | 1  | 0       |  |

Defines IRQ number assigned to D and C pins. Loaded from Configuration ROM Header after PnP reset. Unused IRQ pins should be assigned IRQ #1.

|         |   | QL |   | INQL |   |   |   |  |
|---------|---|----|---|------|---|---|---|--|
| 7       | 6 | 5  | 4 | 3    | 2 | 1 | 0 |  |
| Defines |   |    | • |      |   | • |   |  |

Defines IRQ number assigned to F and E pins. Loaded from Configuration ROM Header after PnP reset. Unused IRQ pins should be assigned IRQ #1.

| DRQB, | DRQA | 1  |   |   |     | (2 | 23h, R) |
|-------|------|----|---|---|-----|----|---------|
|       | DR   | QB |   |   | DRO | QA |         |
| 7     | 6    | 5  | 4 | 3 | 2   | 1  | 0       |

Defines DRQ number assigned to B and A pins. Loaded from Configuration ROM header after PnP reset. Unused DRQ pins should be assigned DRQ #2.

| DRQD | , DRQC | ;  |   |   |     | (2 | 24h, R) |
|------|--------|----|---|---|-----|----|---------|
|      | DR     | QD |   |   | DRO | QC |         |
| 7    | 6      | 5  | 4 | 3 | 2   | 1  | 0       |

Defines DRQ number assigned to D and C pins. Loaded from Configuration ROM header after PnP reset. Unused DRQ pins should be assigned DRQ #2.

| Configuration ROM Header 0 (25h, R) |   |                |    |   |       |        |         |  |
|-------------------------------------|---|----------------|----|---|-------|--------|---------|--|
| DRQ latch                           |   | rboard/<br>ard | GP |   | Modem | CD-ROM | MPU-401 |  |
| 7                                   | 6 | 5              | 4  | 3 | 2     | 1      | 0       |  |

Loaded from Configuration ROM header after PnP reset.

### Bit Definitions:

| <u>Bits</u> | <u>Name</u>  | Descrip                               | <u>tion</u>                                                                              |                                           |  |  |  |
|-------------|--------------|---------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| 7           | DRQ<br>latch |                                       | <ul><li>1 = DRQ latch feature enabled.</li><li>0 = DRQ latch feature disabled.</li></ul> |                                           |  |  |  |
| 6:5         | Mother-      | ES1869 is on motherboard/add-on card. |                                                                                          |                                           |  |  |  |
|             | board/       | <u>Bit 6</u>                          | <u>Bit 5</u>                                                                             | Motherboard/Card                          |  |  |  |
|             | card         | 0                                     | 0                                                                                        | Motherboard                               |  |  |  |
|             |              | 0                                     | 1                                                                                        | Card                                      |  |  |  |
|             |              | 1                                     | 0                                                                                        | Reserved                                  |  |  |  |
|             |              | 1                                     | 1                                                                                        | Reserved                                  |  |  |  |
| 4:3         | GP           | Genera                                | l-purpos                                                                                 | se location.                              |  |  |  |
|             |              | <u>Bit 4</u>                          | <u>Bit 3</u>                                                                             | General Purpose Location                  |  |  |  |
|             |              | 0                                     | 0                                                                                        | GP is not present                         |  |  |  |
|             |              | 0                                     | 1                                                                                        | GP is LDN 3,4,5,or 6; GP uses 4 addresses |  |  |  |
|             |              | 1                                     | 0                                                                                        | GP uses 8 addresses                       |  |  |  |
|             |              | 1                                     | 1                                                                                        | GP uses 16 addresses                      |  |  |  |
| 2           | Modem        |                                       | 1 = Modem is LDN 3, 4, or 5.<br>0 = Modem is not present.                                |                                           |  |  |  |

#### PNP CONFIGURATION AND REGISTERS



| <u>Bits</u> | <u>Name</u> | <u>Description</u>            |
|-------------|-------------|-------------------------------|
| 1           | CD-ROM      | 1 = CD-ROM is LDN 3 or 4.     |
|             |             | 0 = CD-ROM is not present.    |
| 0           | MPU-401     | 1 = MPU-401 is LDN 3; interru |

MPU-401 1 = MPU-401 is LDN 3; interrupt is not shared with audio interrupt 1 or 2.
 0 = MPU-401 is part of LDN 1; interrupt is shared with audio interrupt 1 or 2.

| Configuration F | COM He          | ader 1              |                     | (2   | 86h, R) |  |
|-----------------|-----------------|---------------------|---------------------|------|---------|--|
| Reserved        | Ext DMA<br>mask | Audio 2<br>DMA mask | Audio 1<br>DMA mask | GPO1 | GPO0    |  |

ReservedExt Divisit<br/>maskAddio 2<br/>DMA maskAddio 1<br/>DMA maskGPO1<br/>GPO076543210

Loaded from configuration ROM header after PnP reset.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>             | Description                                                                  |
|-------------|-------------------------|------------------------------------------------------------------------------|
| 4           | External<br>DMA<br>mask | <ul><li>1 = Enable external DMA mask.</li><li>0 = Disable.</li></ul>         |
| 3           | Audio 2<br>DMA<br>mask  | 1 = Enable audio 2 DMA mask.<br>0 = Disable.                                 |
| 2           | Audio 1<br>DMA<br>mask  | 1 = Enable audio 1 DMA mask.<br>0 = Disable.                                 |
| 1           | GPO1                    | 1 = GPO1 pin is external DACK, GPI is external DRQ.<br>0 = GPO1 pin is GPO1. |
| 0           | GPO0                    | 1 = GPO0 pin is GPCS.<br>0 = GPO0 pin is GPO0.                               |

### Hardware Volume IRQ Number

(27h, R)

|   |   | Hardw | are volur | ne IRQ n | umber |   |   |
|---|---|-------|-----------|----------|-------|---|---|
| 7 | 6 | 5     | 4         | 3        | 2     | 1 | 0 |

Hardware volume IRQ number (must be shared with audio 1 or audio 2). Reset to 0 by PnP reset.

| MPU-4 | MPU-401 IRQ Number |   |          |         |    |   |   |  |
|-------|--------------------|---|----------|---------|----|---|---|--|
|       |                    | М | PU-401 I | RQ numb | er |   |   |  |
| 7     | 6                  | 5 | 4        | 3       | 2  | 1 | 0 |  |

MPU-401 IRQ number (alias address with register 70h of MPU-401 LDN 3).

| F | PnP E | (29h, R) |   |   |   |   |   |            |
|---|-------|----------|---|---|---|---|---|------------|
|   |       |          |   |   |   |   |   | PnP enable |
| _ | 7     | 6        | 5 | 4 | 3 | 2 | 1 | 0          |

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|-------------|-------------|--------------------|
|-------------|-------------|--------------------|

0 PnP 1 = PnP enabled.

enable 0 = PnP disabled. The ES1869 will not respond to any PnP commands. This bit is set high by hardware reset.

## **Logical Device Registers**

| LDN 0 (mandatory)       Configuration device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. Eight locations.         61h       I/O base address, bits 7:3.         74h       DMA Channel Select 0 (default = 4).         75h       DMA Channel Select 1 (default = 4).         LDN 1 (mandatory)       Audio device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor; bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 7:2.         64h       I/O base address of MPU-401, bits 7:2.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Type Select 1 (returns 2).         71h       Interrupt Request Type Select 2 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select.                                                                                              | LDN #    | -                    | Device                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--------------------------------------|--|
| 30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8.lf zero, this device is disabled. Eight locations.         61h       I/O base address, bits 7:3.         74h       DMA Channel Select 0 (default = 4).         75h       DMA Channel Select 1 (default = 4).         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. lf zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. lf zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 11:8. lf zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 11:8. lf zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 2 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).                             | LDN 0 (r | nandatory)           | Configuration device                 |  |
| 60h       I/O base address, bits 11:8. If zero, this device is disabled. Eight locations.         61h       I/O base address, bits 7:3.         74h       DMA Channel Select 0 (default = 4).         75h       DMA Channel Select 1 (default = 4).         LDN 1 (mandatory)       Audio device         30h       Activate; bit 0 is activate bit.         31h       I/O Base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         76h       DMA Channel 2 Select (default = 4).         77h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 2 Select (default |          |                      |                                      |  |
| 60h       I/O base address, bits 11:8. If zero, this device is disabled. Eight locations.         61h       I/O base address, bits 7:3.         74h       DMA Channel Select 0 (default = 4).         75h       DMA Channel Select 1 (default = 4).         100       Activate; bit 0 is activate bit.         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select                                   | 31h      | I/O Range Check      |                                      |  |
| 74h       DMA Channel Select 0 (default = 4).         75h       DMA Channel Select 1 (default = 4).         LDN 1 (mandatory)       Audio device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         10       Sase add                                   | 60h      | I/O base address     | , bits 11:8. If zero, this device is |  |
| 75h       DMA Channel Select 1 (default = 4).         LDN 1 (mandatory)       Audio device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         LDN 2 (mandatory)       Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O Range Check.         60h       I/O Base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O Base address, bits 7:0.         LDN 3 or LDN 1 I/O desc address, bits 7:0.       MPU-401 device                                                              | 61h      | I/O base address     | , bits 7:3.                          |  |
| LDN 1 (mandatory)       Audio device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 1 Select (default = 4).         17h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         100       Base address, bits 11:8. If zero, this device is disabled. One location.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LD                          | 74h      | DMA Channel Se       | lect 0 (default = 4).                |  |
| 30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         10       Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.                                                                                                                                                                                                                                                                    | 75h      | DMA Channel Se       | lect 1 (default = 4).                |  |
| 31h       I/O Range Check.         60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         1/O base address, bits 11:8. If zero, this device is disabled. One location.       100 base address, bits 11:8. If zero, this device is disabled. One location.                                                                                                                                                                                                                                                                                                                          | LDN 1 (r | nandatory)           | Audio device                         |  |
| 60h       I/O base address of audio processor; bits 11:8. If zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Channel 1 Select.         73h       Interrupt Request Type Select 1 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         1/O Range Check.       60h         60h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O desciptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                     | 30h      | Activate; bit 0 is a | ictivate bit.                        |  |
| zero, this device is not accessible. Sixteen locations.         61h       I/O base address of audio processor, bits 7:4.         62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Channel 2 Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         10DN 2 (mandatory)       Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                             | 31h      | I/O Range Check      |                                      |  |
| 62h       I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.         63h       I/O base address of FM alias, bits 7:2.         64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Channel 1 Select.         73h       Interrupt Request Type Select 1 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                          | 60h      |                      |                                      |  |
| device is not accessible. Four locations.63hI/O base address of FM alias, bits 7:2.64hI/O base address of MPU-401, bits 11:8. If zero, this<br>device is not accessible. MPU-401 may also be<br>accessible through LDN 3. Two locations.65hI/O base address of MPU-401, bits 7:2.70hInterrupt Request Channel 1 Select.71hInterrupt Request Type Select 1 (returns 2).72hInterrupt Request Type Select 2 (returns 2).73hInterrupt Request Type Select 2 (returns 2).74hDMA Channel 1 Select (default = 4).75hDMA Channel 2 Select (default = 4).10hI/O Range Check.60hI/O Range Check.60hI/O base address, bits 11:8. If zero, this device is<br>disabled. One location.61hI/O base address, bits 7:0.LDN 3 or LDN 1 I/O<br>descriptor #2 (optional)MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61h      | I/O base address     | of audio processor, bits 7:4.        |  |
| 64h       I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Type Select 2 (returns 2).         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         100       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62h      |                      |                                      |  |
| device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.         65h       I/O base address of MPU-401, bits 7:2.         70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Channel 2 Select.         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4). <b>LDN 2 (mandatory)</b> Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0. <b>LDN 3 or LDN 1 I/O descriptor #2 (optional)</b> MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63h      | I/O base address     | of FM alias, bits 7:2.               |  |
| 70h       Interrupt Request Channel 1 Select.         71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Channel 2 Select.         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         20h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64h      | device is not acce   | essible. MPU-401 may also be         |  |
| 71h       Interrupt Request Type Select 1 (returns 2).         72h       Interrupt Request Channel 2 Select.         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         1000       Activate; bit 0 is activate bit.         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65h      | I/O base address     | of MPU-401, bits 7:2.                |  |
| 72h       Interrupt Request Channel 2 Select.         73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4). <b>LDN 2 (mandatory) Joystick device</b> 30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70h      | Interrupt Request    | Channel 1 Select.                    |  |
| 73h       Interrupt Request Type Select 2 (returns 2).         74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4). <b>LDN 2 (mandatory)</b> Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0. <b>LDN 3 or LDN 1 I/O descriptor #2 (optional)</b> MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71h      | Interrupt Request    | Type Select 1 (returns 2).           |  |
| 74h       DMA Channel 1 Select (default = 4).         75h       DMA Channel 2 Select (default = 4).         LDN 2 (mandatory)       Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72h      | Interrupt Request    | Channel 2 Select.                    |  |
| 75h       DMA Channel 2 Select (default = 4).         LDN 2 (mandatory)       Joystick device         30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73h      | Interrupt Request    | Type Select 2 (returns 2).           |  |
| LDN 2 (mandatory)     Joystick device       30h     Activate; bit 0 is activate bit.       31h     I/O Range Check.       60h     I/O base address, bits 11:8. If zero, this device is disabled. One location.       61h     I/O base address, bits 7:0.       LDN 3 or LDN 1 I/O descriptor #2 (optional)     MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74h      | DMA Channel 1 S      | Select (default = 4).                |  |
| 30h       Activate; bit 0 is activate bit.         31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75h      | DMA Channel 2 S      | Select (default = 4).                |  |
| 31h       I/O Range Check.         60h       I/O base address, bits 11:8. If zero, this device is disabled. One location.         61h       I/O base address, bits 7:0.         LDN 3 or LDN 1 I/O descriptor #2 (optional)       MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LDN 2 (r | nandatory)           | Joystick device                      |  |
| 60hI/O base address, bits 11:8. If zero, this device is<br>disabled. One location.61hI/O base address, bits 7:0.LDN 3 or LDN 1 I/O<br>descriptor #2 (optional)MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30h      | Activate; bit 0 is a | ctivate bit.                         |  |
| disabled. One location.       61h     I/O base address, bits 7:0.       LDN 3 or LDN 1 I/O<br>descriptor #2 (optional)     MPU-401 device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31h      | I/O Range Check      |                                      |  |
| LDN 3 or LDN 1 I/O MPU-401 device descriptor #2 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |                                      |  |
| descriptor #2 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61h      | I/O base address     | , bits 7:0.                          |  |
| 30h Activate; bit 0 is activate bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      | MPU-401 device                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30h      | Activate; bit 0 is a | ctivate bit.                         |  |



### Table 11 Logical Device Summary (Continued)

| LDN #                |                                                                                                         | Device                                                                 |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| 31h                  | I/O Range Check.                                                                                        |                                                                        |  |  |  |  |
| 60h                  | I/O base address<br>disabled. Two loc                                                                   | , bits 11:8. If zero, this device is ations.                           |  |  |  |  |
| 61h                  | I/O base address                                                                                        | , bits 7:0.                                                            |  |  |  |  |
| 70h                  | Interrupt Request                                                                                       | MPU Select.                                                            |  |  |  |  |
| 71h                  | Interrupt Request                                                                                       | Type Select 0 (returns 2).                                             |  |  |  |  |
| LDN 3 o              | r 4 (optional)                                                                                          | CD-ROM device                                                          |  |  |  |  |
| 30h                  | Activate; bit 0 is a                                                                                    | activate bit.                                                          |  |  |  |  |
| 31h                  | I/O Range Check                                                                                         |                                                                        |  |  |  |  |
| 60h                  |                                                                                                         | of 1st address range, bits 11:8. If s not accessible. Eight locations. |  |  |  |  |
| 61h                  | I/O base address                                                                                        | of 1st address range, bits 7:0.                                        |  |  |  |  |
| 62h                  |                                                                                                         | of 2nd address range, bits 11:8. If s not accessible. Two locations.   |  |  |  |  |
| 63h                  | I/O base address                                                                                        | of 2nd address range, bits 7:0.                                        |  |  |  |  |
| 70h                  | Interrupt Request                                                                                       | CD-ROM Select.                                                         |  |  |  |  |
| 71h                  | Interrupt Request                                                                                       | Type Select 0 (returns 2).                                             |  |  |  |  |
| 74h                  | DMA Channel Se                                                                                          | lect for CD-ROM (default = 4).                                         |  |  |  |  |
| LDN 3, 4             | l, or 5 (optional)                                                                                      | Modem device                                                           |  |  |  |  |
| 30h                  | Activate; bit 0 is a                                                                                    | activate bit.                                                          |  |  |  |  |
| 31h                  | I/O Range Check                                                                                         |                                                                        |  |  |  |  |
| 60h                  | I/O base address, accessible. Eight                                                                     | , bits 11:8. If zero, this device is not locations.                    |  |  |  |  |
| 61h                  | I/O base address                                                                                        | , bits 7:0.                                                            |  |  |  |  |
| 70h                  | Interrupt Request                                                                                       | Modem Select.                                                          |  |  |  |  |
| 71h                  | Interrupt Request                                                                                       | Type Select 0 (returns 2).                                             |  |  |  |  |
| 74h                  | DMA Channel Se                                                                                          | lect for Modem (default = 4).                                          |  |  |  |  |
| LDN 3, 4<br>(optiona |                                                                                                         | General-Purpose device                                                 |  |  |  |  |
| 30h                  | Activate; bit 0 is a                                                                                    | activate bit.                                                          |  |  |  |  |
| 31h                  | I/O Range Check                                                                                         |                                                                        |  |  |  |  |
| 60h                  | I/O base address, bits 11:8. If zero, this device is not accessible. Four, eight, or sixteen locations. |                                                                        |  |  |  |  |
| 61h                  | I/O base address                                                                                        | , bits 7:0.                                                            |  |  |  |  |
| 70h                  | Interrupt Request General-Purpose Device Select.                                                        |                                                                        |  |  |  |  |
| 71h                  | Interrupt Request                                                                                       | Type Select 0 (returns 2).                                             |  |  |  |  |
| 74h                  | DMA Channel Se<br>(default = 4).                                                                        | lect for General-Purpose Device                                        |  |  |  |  |

## LDN 0: Configuration Device

| Activa | (30 | 0h, R/W) |   |   |   |   |          |
|--------|-----|----------|---|---|---|---|----------|
| 0      | 0   | 0        | 0 | 0 | 0 | 0 | Activate |
| 7      | 6   | 5        | 4 | 3 | 2 | 1 | 0        |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

## **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | <b>Description</b>        |
|-------------|-------------|---------------------------|
| 0           | Activate    | 1 = Activate.             |
|             |             | 0 = Deactivate (default). |

| I/O F | Rang    | je Ch | neck |   |   |                    | (31h, R)       |
|-------|---------|-------|------|---|---|--------------------|----------------|
| 0     | 0 0 0 0 |       |      | 0 | 0 | Enable range check | Pattern select |
| 7     | 7 6 5 4 |       | 3    | 2 | 1 | 0                  |                |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>              | <b>Description</b>                      |
|-------------|--------------------------|-----------------------------------------|
| 1           | Enable<br>range<br>check | 1 = Enable range check.<br>0 = Disable. |
| 0           | Pattern select           | 1 = 55h.<br>0 = AAh.                    |

| I/O De | /O Decoder 0 Base Address |   |   |   |     |      |   |  |  |  |  |  |  |
|--------|---------------------------|---|---|---|-----|------|---|--|--|--|--|--|--|
| 0      | 0                         | 0 | 0 |   | A[1 | 1:8] |   |  |  |  |  |  |  |
| 7      | 6                         | 5 | 4 | 3 | 2   | 1    | 0 |  |  |  |  |  |  |

This register is used to assign an I/O base address to I/O decoder 0 of the logical device. I/O base address, bits 11:8.

| I/O De | coder | 0 Base |   |   | (61h, R) |   |   |
|--------|-------|--------|---|---|----------|---|---|
|        |       | A[7:3] | 0 | 0 | 0        |   |   |
| 7      | 6     | 5      | 4 | 3 | 2        | 1 | 0 |

I/O base address, bits 7:3.

| DMA ( | Channe | el Selec |   | ( | (74h, R) |      |   |
|-------|--------|----------|---|---|----------|------|---|
| 0     | 0      | 0        | 0 | 0 |          | Data |   |
| 7     | 6      | 5        | 4 | 3 | 2        | 1    | 0 |

Returns 4 (no DMA channel selected).

### Bit Definitions:

Bits Name Description

2:0 Data Select which channel is in use for DMA 0.

| DMA Channel Select 1 (75h, R) |   |      |   |   |   |   |  |  |  |  |
|-------------------------------|---|------|---|---|---|---|--|--|--|--|
| 0                             | 0 | Data |   |   |   |   |  |  |  |  |
| 7                             | 6 | 5    | 3 | 2 | 1 | 0 |  |  |  |  |

Returns 4 (no DMA channel selected).

PNP CONFIGURATION AND REGISTERS

### **Bit Definitions:**

| <u>Bits</u> Name | Description                               |
|------------------|-------------------------------------------|
| 2:0 Data         | Select which channel is in use for DMA 1. |

### LDN 1: Audio Device

This device actually supports three functions: audio, FM, and MPU-401. Audio requires sixteen I/O locations, one interrupt which is shared with MPU-401, and two DMA channels. FM requires four I/O locations. MPU-401 requires two I/O locations.

## Activato

| Activa | te | (30 | )h, R/W) |   |   |   |          |
|--------|----|-----|----------|---|---|---|----------|
| 0      | 0  | 0   | 0        | 0 | 0 | 0 | Activate |
| 7      | 6  | 5   | 4        | 3 | 2 | 1 | 0        |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description               |
|-------------|-------------|---------------------------|
| 0           | Activate    | 1 = Activate.             |
|             |             | 0 = Deactivate (default). |

| I/O Range Check |   |   |   |   |   |   |                    | (31h, R)       |
|-----------------|---|---|---|---|---|---|--------------------|----------------|
|                 | 0 | 0 | 0 | 0 | 0 | 0 | Enable range check | Pattern select |
|                 | 7 | 6 | 5 | 4 | 3 | 2 | 1                  | 0              |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>              | <u>Description</u>                                             |
|-------------|--------------------------|----------------------------------------------------------------|
| 1           | Enable<br>range<br>check | <ul><li>1 = Enable range check.</li><li>0 = Disable.</li></ul> |
| 0           | Pattern select           | 1 = 55h.<br>0 = AAh.                                           |

| Audio Processor I/O Base Address (60h, R/W) |
|---------------------------------------------|
|---------------------------------------------|

| 0 | 0 | 0 | 0 | A[11:8] |   |   |   |
|---|---|---|---|---------|---|---|---|
| 7 | 6 | 5 | 4 | 3       | 2 | 1 | 0 |

I/O base address of audio processor, bits 11:8. Sixteen locations.

| Audio Processor I/O Base Address | (61h, R/W) |
|----------------------------------|------------|
|----------------------------------|------------|

|   | A[7 | 7:4] |   | 0 | 0 | 0 | 0 |
|---|-----|------|---|---|---|---|---|
| 7 | 6   | 5    | 4 | 3 | 2 | 1 | 0 |

I/O base address of audio processor, bits 7:4.

### FM Alias I/O Base Address

| 0 | 0 | 0 | 0 |   | A[1 | 1:8] |   |  |
|---|---|---|---|---|-----|------|---|--|
| 7 | 6 | 5 | 4 | 3 | 2   | 1    | 0 |  |

I/O base address of FM alias, bits 11:8. Four locations.

| FM Alias I/O Base Address | (63h, R/W) |
|---------------------------|------------|
|                           |            |

| A[7:2] |   |   |   |   |   | 0 | 0 |
|--------|---|---|---|---|---|---|---|
| 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

I/O base address of FM alias, bits 7:2.

| MPU-4 | 01 I/O | Base A | ddres | S       |   | (64 | h, R/W) |
|-------|--------|--------|-------|---------|---|-----|---------|
| 0     | 0      | 0      | 0     | A[11:8] |   |     |         |
| 7     | 6      | 5      | 4     | 3       | 2 | 1   | 0       |

I/O base address of MPU-401, bits 11:8. (MPU-401 may also be accessible through LDN 3). Two locations.

| MPU-401 I/O Base Address | (65 | h, R <b>/W)</b> |  |
|--------------------------|-----|-----------------|--|
|                          |     | -               |  |

| A[7:2] |   |   |   | 0 | 0 |   |   |
|--------|---|---|---|---|---|---|---|
| 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

I/O base address of MPU-401, bits 7:2.

| Interrupt Request Channel 1 Select |   |   |   |  | (70h, R/W) |
|------------------------------------|---|---|---|--|------------|
| 0                                  | 0 | 0 | 0 |  | Data       |

| 0 | 0 | 0 | 0 |   | Da | ala |   |  |
|---|---|---|---|---|----|-----|---|--|
| 7 | 6 | 5 | 4 | 3 | 2  | 1   | 0 |  |

Interrupt request channel 1 select.

## Bit Definitions:

| <u>Bits</u> | Name | <b>Description</b> |
|-------------|------|--------------------|
|             |      |                    |

3:0 Data Select which interrupt used for channel 1 IRQ.

| Interru | pt Rec | ( | (71h, R) |   |   |   |   |
|---------|--------|---|----------|---|---|---|---|
| 0       | 0      | 0 | 0        | 0 | 0 | 1 | 0 |
| 7       | 6      | 5 | 4        | 3 | 2 | 1 | 0 |

Interrupt request type select 1. Returns 2 (low-to-high transition).

| Interrupt Request Channel 2 Select (72h, R |   |   |   |   |   |   | h, R/W) |   |
|--------------------------------------------|---|---|---|---|---|---|---------|---|
|                                            | 0 | 0 | 0 | 0 |   | D | ata     |   |
|                                            | 7 | 6 | 5 | 4 | 3 | 2 | 1       | 0 |

Interrupt request channel 2 select.

Bit Definitions:

| <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|-------------|-------------|--------------------|
|-------------|-------------|--------------------|

3:0 Data Select which interrupt used for channel 2 IRQ.



(62h. R/W)



#### PNP CONFIGURATION AND REGISTERS

#### Interrupt Request Type Select 2

| Γ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|
|   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Interrupt request type select 2. Returns 2 (low-to-high transition).

## **DMA Channel 1 Select**

| OMA Channel 1 Select |   |   |   |   |   | (    | (74h, R) |
|----------------------|---|---|---|---|---|------|----------|
| 0                    | 0 | 0 | 0 | 0 |   | Data |          |
| 7                    | 6 | 5 | 4 | 3 | 2 | 1    | 0        |

Returns 4 (no DMA channel selected).

### **Bit Definitions:**

| <u>Bits</u> Name | Description                                           |
|------------------|-------------------------------------------------------|
| 2:0 Data         | Select which DMA channel is in use for channel 1 DRQ. |

### **DMA Channel 2 Select**

| 0 | 0 | 0 | 0 | 0 |   | Data |   |
|---|---|---|---|---|---|------|---|
| 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0 |

Returns 4 (no DMA channel selected).

### **Bit Definitions:**

| <u>Bits</u> Name | Description                                                |
|------------------|------------------------------------------------------------|
| 2:0 Data         | Select which DMA channel is in use for chan-<br>nel 2 DRQ. |

### LDN 2: Joystick Device

| Activa | te |   |   |   |   | (30 | )h, R/W) |
|--------|----|---|---|---|---|-----|----------|
| 0      | 0  | 0 | 0 | 0 | 0 | 0   | Activate |
| 7      | 6  | 5 | 4 | 3 | 2 | 1   | 0        |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description               |
|-------------|-------------|---------------------------|
| 0           | Activate    | 1 = Activate.             |
|             |             | 0 = Deactivate (default). |

### I/O Range Check

|       |   | • |   |   |   |                    |                |
|-------|---|---|---|---|---|--------------------|----------------|
| 0     | 0 | 0 | 0 | 0 | 0 | Enable range check | Pattern select |
| <br>7 | 6 | 5 | 4 | 3 | 2 | 1                  | 0              |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### **Bit Definitions:**

(73h, R)

(75h, R)

(31h, R)

| <u>Bits</u> | <u>Name</u>              | <b>Description</b>                                             |
|-------------|--------------------------|----------------------------------------------------------------|
| 1           | Enable<br>range<br>check | <ul><li>1 = Enable range check.</li><li>0 = Disable.</li></ul> |
| 0           | Pattern select           | 1 = 55h.<br>0 = AAh.                                           |

#### I/O Decoder 0 Base Address (60h, R/W)

| 0 | 0 | 0 | 0 | A[11:8] |   |   |   |
|---|---|---|---|---------|---|---|---|
| 7 | 6 | 5 | 4 | 3       | 2 | 1 | 0 |

I/O base address, bits 11:8. One location.

| I/O Decoder 0 Base Address (61h, R/W) |   |   |   |       |   |   |   |  |
|---------------------------------------|---|---|---|-------|---|---|---|--|
|                                       |   |   | А | [7:0] |   |   |   |  |
| 7                                     | 6 | 5 | 4 | 3     | 2 | 1 | 0 |  |

I/O base address, bits 7:0.

## LDN 3: MPU-401 Device

The MPU-401, as an independent device, is optional; normally MPU-401 is part of the AudioDrive® solution.

|  | )h, R/W) |   |   |   |   |   |   |          |
|--|----------|---|---|---|---|---|---|----------|
|  | 0        | 0 | 0 | 0 | 0 | 0 | 0 | Activate |
|  | 7        | 6 | 5 | 4 | 3 | 2 | 1 | 0        |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

| <u>Bits</u> Nan | ne <u>Des</u> | <u>cription</u> |
|-----------------|---------------|-----------------|
|-----------------|---------------|-----------------|

0 Activate 1 = Activate. 0 = Deactivate (default).

| I/O F | Rang | je Cł | neck |   |   |                    | (31h, R)       |
|-------|------|-------|------|---|---|--------------------|----------------|
| 0     | 0    | 0     | 0    | 0 | 0 | Enable range check | Pattern select |
| 7     | 6    | 5     | 4    | 3 | 2 | 1                  | 0              |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>              | Description                             |
|-------------|--------------------------|-----------------------------------------|
| 1           | Enable<br>range<br>check | 1 = Enable range check.<br>0 = Disable. |
| 0           | Pattern<br>select        | 1 = 55h.<br>0 = AAh.                    |

### PNP CONFIGURATION AND REGISTERS

|  | ī |
|--|---|

(60h, R/W)

### I/O Decoder 0 Base Address

| 0 | 0 | 0 | 0 | A[11:8] |   |   |   |
|---|---|---|---|---------|---|---|---|
| 7 | 6 | 5 | 4 | 3       | 2 | 1 | 0 |

I/O base address, bits 11:8. Two locations.

| I/O Decoder 0 Base Address (61h, R/W) |   |   |   |   |   |   |   |  |
|---------------------------------------|---|---|---|---|---|---|---|--|
|                                       |   |   |   |   |   |   |   |  |
| 7                                     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |

I/O base address, bits 7:0.

|   | Interru | ipt Rec | quest N | IPU Se | lect |      | (70 | h, R/W) |
|---|---------|---------|---------|--------|------|------|-----|---------|
|   | 0       | 0       | 0       | 0      |      | Data |     |         |
| 1 | 7       | 6       | 5       | 4      | 3    | 2    | 1   | 0       |

Interrupt request MPU select.

### **Bit Definitions:**

Bits Name Description

3:0 Data Select which interrupt used for MPU IRQ.

| Interrupt Request Type Select 0 (71) |   |   |   |   |   |   |   |   |  |
|--------------------------------------|---|---|---|---|---|---|---|---|--|
| Γ                                    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |
|                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |

Interrupt request type select 0. Returns 2 (low-to-high transition).

### LDN 4: CD-ROM Device

The CD-ROM Device is optional. If present, it is LDN 3 or 4.

| Activate (30h, R/W) |   |   |   |   |   |   |   |          |  |  |
|---------------------|---|---|---|---|---|---|---|----------|--|--|
|                     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Activate |  |  |
|                     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0        |  |  |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | <b>Description</b>        |
|-------------|-------------|---------------------------|
| 0           | Activate    | 1 = Activate.             |
|             |             | 0 = Deactivate (default). |

| I/O F     | Rang | je Ch | neck |              |                    |                | (31h, R) |
|-----------|------|-------|------|--------------|--------------------|----------------|----------|
| 0         | 0    | 0     | 0    | 0 0 Enable r | Enable range check | Pattern select |          |
| 7 6 5 4 3 |      | 3     | 2    | 1            | 0                  |                |          |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### **Bit Definitions:**

(60h, R/W)

| <u>Bits</u> | <u>Name</u>              | Description                                                    |  |  |  |  |
|-------------|--------------------------|----------------------------------------------------------------|--|--|--|--|
| 1           | Enable<br>range<br>check | <ul><li>1 = Enable range check.</li><li>0 = Disable.</li></ul> |  |  |  |  |
| 0           | Pattern select           | 1 = 55h.<br>0 = AAh.                                           |  |  |  |  |

## I/O Decoder 0 Base Address

| 0 | 0 | 0 | 0 |   | A[1 | 1:8] |   |
|---|---|---|---|---|-----|------|---|
| 7 | 6 | 5 | 4 | 3 | 2   | 1    | 0 |

I/O base address of first address range, bits 11:8. Eight locations.

| I/O Decoder 0 Base Address | (61h, R/W) |
|----------------------------|------------|
|                            |            |

|   |   |   | A | [7:0] |   |   |   |
|---|---|---|---|-------|---|---|---|
| 7 | 6 | 5 | 4 | 3     | 2 | 1 | 0 |

I/O base address of first address range, bits 7:0.

| I/O De | coder | 1 Base | Addre | SS | (62h, R/W) |
|--------|-------|--------|-------|----|------------|
|        |       |        |       |    |            |

| 0 | 0 | 0 | 0 | A[11:8] |   |   |   |
|---|---|---|---|---------|---|---|---|
| 7 | 6 | 5 | 4 | 3       | 2 | 1 | 0 |

I/O base address of second address range, bits 11:8. Two locations.

| I/O Decoder 1 Base Address | (63h, R/W) |
|----------------------------|------------|
| A[7:0]                     |            |

3

2

1

Ο

I/O base address of second address range, bits 7:0.

4

| Interru | pt Rec | uest C | D-RON | I Select |   | (70h, R/W) |  |
|---------|--------|--------|-------|----------|---|------------|--|
|         |        |        |       |          | _ |            |  |

| 0 | 0 | 0 | 0 |   | D | ata |   |
|---|---|---|---|---|---|-----|---|
| 7 | 6 | 5 | 4 | 3 | 2 | 1   | 0 |

Interrupt request CD-ROM select.

5

## **Bit Definitions:**

7

6

| <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|-------------|-------------|--------------------|
|-------------|-------------|--------------------|

3:0 Data Select which interrupt used for CD-ROM IRQ.

| Interru | ( | 71h, R) |   |   |   |   |   |
|---------|---|---------|---|---|---|---|---|
| 0       | 0 | 0       | 0 | 0 | 0 | 1 | 0 |
| 7       | 6 | 5       | 4 | 3 | 2 | 1 | 0 |

Interrupt request type select 0. Returns 2 (low-to-high transition).

| DMA Channel Select for CD-ROM | (74h, R) |
|-------------------------------|----------|
|-------------------------------|----------|

|   |   |   |   |   | •    |  |
|---|---|---|---|---|------|--|
| 0 | 0 | 0 | 0 | 0 | Data |  |



#### PNP CONFIGURATION AND REGISTERS

| _ |   | - |   |     |   |   |   |
|---|---|---|---|-----|---|---|---|
| 7 | 6 | 5 | 4 | - 3 | 2 | 1 | 0 |
|   | • | • |   | 0   | - |   | • |

Returns 4 (no DMA channel selected).

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|-------------|-------------|--------------------|
|-------------|-------------|--------------------|

2:0 Data Select which DMA channel is in use for CD-ROM DRQ.

## LDN 5: Modem Device

The Modem Device is optional. If present, it is LDN 3, 4, or 5.

| Activate (30h, R/V |   |   |   |   |   |   |   |          |  |  |
|--------------------|---|---|---|---|---|---|---|----------|--|--|
|                    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Activate |  |  |
|                    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0        |  |  |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description               |
|-------------|-------------|---------------------------|
| 0           | Activate    | 1 = Activate.             |
|             |             | 0 = Deactivate (default). |

### I/O Range Check

|   | . ang | ,0 0. |   | _ |   |                    | (0111,11)      |  |
|---|-------|-------|---|---|---|--------------------|----------------|--|
| 0 | 0     | 0     | 0 | 0 | 0 | Enable range check | Pattern select |  |
| 7 | 6     | 5     | 4 | 3 | 2 | 1                  | 0              |  |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

### Bit Definitions:

| <u>Bits</u> | <u>Name</u>    | <u>Description</u>                                             |
|-------------|----------------|----------------------------------------------------------------|
| 1           |                | <ul><li>1 = Enable range check.</li><li>0 = Disable.</li></ul> |
| 0           | Pattern select | 1 = 55h.<br>0 = AAh.                                           |

### I/O Decoder 0 Base Address

| 0 | 0 | 0 | 0 |   | A[1 | 1:8] |   |
|---|---|---|---|---|-----|------|---|
| 7 | 6 | 5 | 4 | 3 | 2   | 1    | 0 |

I/O base address of address range, bits 11:8. Eight locations.

### I/O Decoder 0 Base Address

|   |   |   | А | [7:0] |   |   |   |
|---|---|---|---|-------|---|---|---|
| 7 | 6 | 5 | 4 | 3     | 2 | 1 | 0 |

I/O base address of address range, bits 7:0.

| Interru | ipt Rec | quest N | Select |   | (70 | h, R/W) |   |
|---------|---------|---------|--------|---|-----|---------|---|
| 0       | 0       | 0       | 0      |   | D   | ata     |   |
| 7       | 6       | 5       | 4      | 3 | 2   | 1       | 0 |

Interrupt request modem select.

### **Bit Definitions:**

| Bits | Name | Description |
|------|------|-------------|
|------|------|-------------|

3:0 Data Select which interrupt used for modem IRQ.

| Interru | ( | (71h, R) |   |   |   |   |   |
|---------|---|----------|---|---|---|---|---|
| 0       | 0 | 0        | 0 | 0 | 0 | 1 | 0 |
| 7       | 6 | 5        | 4 | 3 | 2 | 1 | 0 |

Interrupt request type select 0. Returns 2 (low-to-high transition).

| DMA Channel Select for Modem |   |   |   |   |   | (    | (74h, R) |
|------------------------------|---|---|---|---|---|------|----------|
| 0                            | 0 | 0 | 0 | 0 |   | Data |          |
| 7                            | 6 | 5 | 4 | 3 | 2 | 1    | 0        |

Returns 4 (no DMA channel selected).

#### **Bit Definitions:**

(31h R)

(60h, R/W)

(61h, R/W)

| <u>Bits</u> Name | Description                                       |
|------------------|---------------------------------------------------|
| 2:0 Data         | Select which DMA channel is in use for Modem DRQ. |

### LDN 6: General-Purpose Device

The general-purpose I/O device is optional. If present, it is LDN 3, 4, 5, or 6.

| Activate (30h, R/W |   |   |   |   |   |   |   | 0h, R/W) |
|--------------------|---|---|---|---|---|---|---|----------|
|                    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Activate |
|                    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0        |

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

### **Bit Definitions:**

I/O Range Check

| <u>Bits</u> | <u>Name</u> | <u>Description</u> |
|-------------|-------------|--------------------|
|             |             |                    |

0 Activate 1 = Activate.

0 = Deactivate (default).

| (31ł | ι, R) |
|------|-------|
|------|-------|

|   | .ung | ,0 0. |   |   |   |                    | (0,)           |  |
|---|------|-------|---|---|---|--------------------|----------------|--|
| 0 | 0    | 0     | 0 | 0 | 0 | Enable range check | Pattern select |  |
| 7 | 6    | 5     | 4 | 3 | 2 | 1                  | 0              |  |

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

#### SAM0023-122898

#### **ES1869 DATA SHEET**

#### PNP CONFIGURATION AND REGISTERS

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>              | <b>Description</b>                                             |
|-------------|--------------------------|----------------------------------------------------------------|
| 1           | Enable<br>range<br>check | <ul><li>1 = Enable range check.</li><li>0 = Disable.</li></ul> |
| 0           | Pattern select           | 1 = 55h.<br>0 = AAh.                                           |

#### I/O Decoder 0 Base Address

| l/O De | coder | 0 Base |   | (60 | h, R/W) |      |   |
|--------|-------|--------|---|-----|---------|------|---|
| 0      | 0     | 0      | 0 |     | A[1     | 1:8] |   |
| 7      | 6     | 5      | 4 | 3   | 2       | 1    | 0 |

I/O base address of address range, bits 11:8. Four, eight, or sixteen locations.

| I/O De | coder ( | ) Base | Addre | SS |   | (61 | h, R/W) |
|--------|---------|--------|-------|----|---|-----|---------|
|        |         |        |       |    |   |     |         |
| 7      | 6       | 5      | 4     | 3  | 2 | 1   | 0       |

I/O base address of address range, bits 7:0.

#### Interrupt Request General-Purpose Device Select (706 D/M)

|   |   |   |   |   |   | (70 | n, R/W) |
|---|---|---|---|---|---|-----|---------|
| 0 | 0 | 0 | 0 |   | D | ata |         |
| 7 | 6 | 5 | 4 | 3 | 2 | 1   | 0       |

Interrupt request general-purpose device select.

#### **Bit Definitions:**

- Bits Name Description
- 3:0 Data Select which interrupt used for general-purpose device IRQ.

| Interru | ( | 71h, R) |   |   |   |   |   |  |
|---------|---|---------|---|---|---|---|---|--|
| 0       | 0 | 0       | 0 | 0 | 0 | 1 | 0 |  |
| 7       | 6 | 5       | 4 | 3 | 2 | 1 | 0 |  |

Interrupt request type select 0. Returns 2 (low-to-high transition).

#### DMA Channel Select for General-Purpose Device (746 D)

|   |   |   |   |   |   | (    | (14n, R) |
|---|---|---|---|---|---|------|----------|
| 0 | 0 | 0 | 0 | 0 |   | Data |          |
| 7 | 6 | 5 | 4 | 3 | 2 | 1    | 0        |

Returns 4 (no DMA channel selected).

#### **Bit Definitions:**

| Bite Hame Beechpiten | <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|----------------------|-------------|-------------|--------------------|
|----------------------|-------------|-------------|--------------------|

Select which DMA channel is in use for general-2:0 Data purpose device DRQ.







# I/O PORTS

## **Port Summary**

Table 12 I/O Ports for Configuration, Audio, FM, MPU-401, and Joystick Devices

| Port                        | Read/Write | Function                                                                                                                               |
|-----------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <b>Configuration Device</b> |            |                                                                                                                                        |
| Base+0h                     | Read/write | Configuration Register Address.                                                                                                        |
| Base+1h                     | Read/write | Configuration Register Data.                                                                                                           |
| Base+2h                     | Read/write | EEPROM Data register.                                                                                                                  |
| Base+3h                     | Read/write | EEPROM Command register.                                                                                                               |
| Base+4h                     | Read/write | Reset EEPROM Address.                                                                                                                  |
| Base+5h                     | Read/write | Status register.                                                                                                                       |
| Base+6h                     | Read-only  | Interrupt Status register.                                                                                                             |
| Base+7h                     | Read/write | Interrupt Mask register.                                                                                                               |
| Audio Device                |            |                                                                                                                                        |
| Base+0h - Base+3h           | Read/write | 20-voice FM synthesizer. Address and data registers.                                                                                   |
| Base+4h                     | Read/write | Mixer Address register (port for address of mixer controller registers).                                                               |
| Base+5h                     | Read/write | Mixer Data register (port for data to/from mixer controller registers).                                                                |
| Base+6h                     | Read/write | Audio reset and status flags.                                                                                                          |
| Base+7h                     | Read/write | Power Management register. Suspend request and FM reset.                                                                               |
| Base+8h - Base+9h           | Read/write | 11-voice FM synthesizer. Address and data registers.                                                                                   |
| Base+Ah                     | Read-only  | Input data from read buffer for command/data I/O. Poll bit 7 of port Audio_Base+Eh to test whether the read buffer contents are valid. |
| Base+Ch                     | Read/write | Output data to write buffer for command/data I/O. Read embedded processor status.                                                      |
| Base+Eh                     | Read-only  | Data available flag from embedded processor.                                                                                           |
| Base+Fh                     | Read/write | Address for I/O access to FIFO in Extended mode.                                                                                       |
| FM Device                   |            |                                                                                                                                        |
| Base+0h - Base+3h           | Read/write | 20-voice FM synthesizer. Address and data registers.                                                                                   |
| MPU-401 Device              |            |                                                                                                                                        |
| Base+0h - Base+1h           | Read/write | MPU-401 port (x=0,1,2, or 3) if enabled.                                                                                               |
| Joystick Device             |            |                                                                                                                                        |
| Base+0h                     | Read/write | Joystick.                                                                                                                              |

I/O PORTS

## **Port Descriptions**

#### **Configuration Device**

|             |             |              |              | EE           | PROM (       | Command        |          |
|-------------|-------------|--------------|--------------|--------------|--------------|----------------|----------|
| 7           | 6           | 5            | 4            | 3            | 2            | 1              | 0        |
| Bit D       | efinitions: |              |              |              |              |                |          |
| <u>Bits</u> | <u>Name</u> | Descrip      | otion        |              |              |                |          |
| 3:0         | EEPROM      | EEPRO        | OM com       | mand op      | otions.      |                |          |
|             | Command     | <u>Bit 3</u> | <u>Bit 2</u> | <u>Bit 1</u> | <u>Bit 0</u> | <u>Functio</u> | <u>n</u> |
|             |             | 0            | 0            | 0            | 0            | Write d        | isable   |
|             |             | 0            | 0            | 0            | 1            | Write a        | I        |
|             |             | 0            | 0            | 1            | 0            | Erase a        | ull      |
|             |             | 0            | 0            | 1            | 1            | Write e        | nable    |
|             |             | 0            | 1            | 0            | 0            | Write          |          |

| Command | <u>Bit 3</u> | <u>Bit 2</u> | <u>Bit 1</u> | <u>Bit 0</u> | <b>Function</b> |
|---------|--------------|--------------|--------------|--------------|-----------------|
|         | 0            | 0            | 0            | 0            | Write disable   |
|         | 0            | 0            | 0            | 1            | Write all       |
|         | 0            | 0            | 1            | 0            | Erase all       |
|         | 0            | 0            | 1            | 1            | Write enable    |
|         | 0            | 1            | 0            | 0            | Write           |
|         | 1            | 0            | 0            | 0            | Read            |
|         | 1            | 1            | 0            | 0            | Erase           |
|         |              |              |              |              |                 |

| Status | Register |  |
|--------|----------|--|
|--------|----------|--|

## (Config\_Base+5h, R/W)

| Rese | erved | EEPRO | OM type | Sta | ate | PNPOK | Rst seq busy |
|------|-------|-------|---------|-----|-----|-------|--------------|
| 7    | 6     | 5     | 4       | 3   | 2   | 1     | 0            |

#### **Bit Definitions:**

- Bits Name **Description**
- 7:6 Reserved Reserved.
- 5:4 EEPROM EEPROM type indicator.

|     | type  | <u>Bit 5</u> | <u>Bit 4</u> | Function     |
|-----|-------|--------------|--------------|--------------|
|     |       | 0            | 0            | Internal ROM |
|     |       | 0            | 1            | Reserved     |
|     |       | 1            | 0            | Reserved     |
|     |       | 1            | 1            | 512 x 8-bit  |
| 3:2 | State | ES1869       | operat       | ing state.   |
|     |       | <u>Bit 3</u> | <u>Bit 2</u> | Function     |
|     |       | 0            | 0            | Wait-for-key |
|     |       |              |              |              |

| 0 | 1 | Sleep |
|---|---|-------|
|---|---|-------|

- 1 0 Isolation
- 1 1 Configure
- 1 **PNPOK** PNPOK bit.
- 0 Rst seq Reset sequence busy bit. busy

| Interrup | Interrupt Status Register |       |        |         | onfig_  | Base+   | 6h, R)  |
|----------|---------------------------|-------|--------|---------|---------|---------|---------|
| Reserved | GP                        | Modem | CD-ROM | MPU-401 | H/W vol | Audio 2 | Audio 1 |
| 7        | 6                         | 5     | 4      | 3       | 2       | 1       | 0       |

Read this register to find out which ES1869 interrupt sources are active.

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description                                                                                 |
|-------------|-------------|---------------------------------------------------------------------------------------------|
| 7           | Reserved    | Reserved.                                                                                   |
| 6           | GP          | General-Purpose. GPI input pin.                                                             |
| 5           | Modem       | Modem. MMIRQ input pin AND'ed with inverse of MMIEB input.                                  |
| 4           | CD-ROM      | CD-ROM interface. CDIRQ input pin.                                                          |
| 3           | MPU-401     | MPU-401. MPU-401 receive interrupt request AND'ed with bit 6 of mixer register 64h.         |
| 2           | H/W vol     | Hardware volume. Hardware volume interrupt request AND'ed with bit 1 of mixer register 64h. |
| 1           | Audio 2     | Audio 2. Audio 2 interrupt request AND'ed with bit 6 of mixer register 7Ah.                 |
| 0           | Audio 1     | Audio 1. Audio 1 interrupt request.                                                         |

#### (Config\_Base+7h, R/W) Interrupt Mask Register

| Reserved | GP | Modem | CD-ROM | MPU-401 | H/W vol | Audio 2 | Audio 1 |
|----------|----|-------|--------|---------|---------|---------|---------|
| 7        | 6  | 5     | 4      | 3       | 2       | 1       | 0       |

The mask bits of this register can be used to force the interrupt source to be zero without putting the interrupt pin in a high-impedance state. Each bit is AND'ed with the corresponding interrupt source. Set to all ones by hardware reset.

#### **Bit Definitions:**

- Bits Name Description 7 Reserved Reserved. GP 6 General-Purpose interrupt mask bit.
- 5 Modem Modem interrupt mask bit.
- 4 CD-ROM CD-ROM interface interrupt mask bit.
- MPU-401 MPU-401 interrupt mask bit. 3
- 2 H/W vol Hardware volume interrupt mask bit.
- 1 Audio 2 Audio 2 interrupt mask bit.
- Audio 1 Audio 1 interrupt mask bit. 0





## Audio Device

| Mixe | r Addre | ss Reg | ister | (A | udio_E | Base+4 | n, R/W) |
|------|---------|--------|-------|----|--------|--------|---------|
| Х    | Х       | A5     | A4    | A3 | A2     | A1     | MXD     |
| 7    | 6       | 5      | 4     | 3  | 2      | 1      | 0       |

The ES1869 provides a means to read back the Mixer Address register. Reading back this register is useful for a "hot-key" application that needs to change the mixer while preserving the address register.

| Mixe | r Data F | Registe | r  | (A | udio_B | lase+5h | n, R/W) |
|------|----------|---------|----|----|--------|---------|---------|
| D7   | D6       | D5      | D4 | D3 | D2     | D1      | D0      |
| 7    | 6        | 5       | 4  | 3  | 2      | 1       | 0       |

| Rese | t and S | tatus F | lags |   | (Audio | _Base+        | •6h, W      |
|------|---------|---------|------|---|--------|---------------|-------------|
| 0    | 0       | 0       | 0    | 0 | 0      | FIFO<br>reset | SW<br>reset |
| 7    | 6       | 5       | 4    | 3 | 2      | 1             | 0           |

## **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Description                                                                          |
|-------------|-------------|--------------------------------------------------------------------------------------|
| 7:2         | -           | Reserved. Always write 0.                                                            |
| 1           | FIFO        | 1 = Hold ES1869 FIFO in reset.                                                       |
|             | reset       | 0 = Release ES1869 FIFO from reset.<br>Bit 1 has no function for Compatibility mode. |
| 0           | SW reset    | 1 = Hold ES1869 in reset.                                                            |

SW reset 1 = Hold ES1869 in reset. 0 = Release ES1869 from reset.

**Reset and Status Flags** 

(Audio\_Base+6h, R)

| Act<br>flag 2 | Act flag<br>1 | Act flag<br>0 | Serial<br>act flag | Digital<br>power-<br>down | MIDI<br>modes | FIFO<br>reset | SW<br>reset |
|---------------|---------------|---------------|--------------------|---------------------------|---------------|---------------|-------------|
| 7             | 6             | 5             | 4                  | 3                         | 2             | 1             | 0           |

Bits 7:4 of port Audio\_Base+6h can be used to monitor I/O activity to the ES1869.

Bits 7:5 are set high after any read from port Audio\_Base+6h. Then specific I/O activity can set these bits low. When port Audio\_Base+6h is read at a later time, these bits will indicate whether I/O activity has occurred between the reads from Audio\_Base+6h.

In addition, bit 4 can be used to indicate if the DSP or ES689/ES69x serial interface is in use. Bit 4 is set high if bit 7 or bit 5 of mixer register 48h is high (software serial enable or serial reset). It is also set high if the ES689/ES69x serial interface is active, which is a combination of bit 4 of mixer register 48h set high and MCLK (ES689/ES69x serial bit clock) being high periodically.

## Bit Definitions:

- Bits Name Description
- 7 Act flag 2 Set low by I/O reads/writes to MPU-401 or FM ports.
- 6 Act flag1 Set low by I/O reads/writes to audio ports Audio\_Base+Ch and Audio\_Base+Eh.
- 5 Act flag 0 Set low by I/O writes to audio ports Audio\_Base+2h, Base+3h, Base+6h, and Base+Ch. Set low by I/O reads from audio ports Audio\_Base+2h, Base+3h, and Base+Ah. Also set low by DMA accesses to ES1869.
- 4 Serial act 1 = Serial activity flag. High if DSP serial mode flag is enabled (SE input pin is high or bits 7or 5 of register 48h is high) or if an external ES689/ ES69x is using MCLK/MSD to drive the FM DAC.
- 3 Digital 0 = The ES1869 digital section is currently powerdown to the analog section is controlled by bit 3 of Audio\_Base+7h.
- 2 MIDI 1 = The ES1869 is processing a MIDI commode mand 30h, 31h, 34h, or 35h. In this mode, the ES1869 is monitoring serial input. Poweringdown may cause a loss of data. The ES1869 does not automatically wake up on serial input on the MSI pin.
- 1 FIFO FIFO Reset bit. reset
- 0 SW reset Software Reset bit.

# Power Management Register (Audio\_Base+7h, R/W)

| Suspend request | GPI | FM<br>synth<br>reset | 0 | Analog<br>power-<br>down |   | GPO1 | GPO0 |
|-----------------|-----|----------------------|---|--------------------------|---|------|------|
| 7               | 6   | 5                    | 4 | 3                        | 2 | 1    | 0    |

Reading or writing port Audio\_Base+7h does not automatically wake up the ES1869.

## Bit Definitions:

| <u>Bits</u> | <u>Name</u> | Description             |
|-------------|-------------|-------------------------|
| 7           | Suspend     | Pulse high, then low to |

- request
- 6 GPI Read-only. Indicates the status of the GPI pin.
- 5 FM synth 1 = Hold FM synthesizer in reset. reset 0 = Release FM synthesizer from reset.
- 4 Reserved. Always write 0.
- H Reserved. Always write U
- 3 Analog 1 = Set Analog\_Stays\_On power- 0 = Clear Analog\_Stays\_On down
- 2 Power- Pulse high, then low to request power-down. down request

request suspend.

#### ES1869 DATA SHEET

I/O PORTS



| <u>Bits</u> Name | Description                                                     |
|------------------|-----------------------------------------------------------------|
| 1 GPO1           | 1 = Set GPO1 high (Hardware reset condition)<br>0 = Clear GPO1. |
| 0 GPO0           | 1 = Set GPO0 high.                                              |

1 = Set GPO0 high. 0 = Clear GPO0 (Hardware reset condition).

| R | lead | Data R | egister |    | (Audio | _Base+ | Ah, R) |    |
|---|------|--------|---------|----|--------|--------|--------|----|
|   | D7   | D6     | D5      | D4 | D3     | D2     | D1     | D0 |
|   | 7    | 6      | 5       | 4  | 3      | 2      | 1      | 0  |

Read data from embedded audio processor. Poll bit 7 of port Audio\_Base+Eh to test whether the register contents are valid.

| Write | Data R | egister | •  |    | (Audio_ | _Base+ | Ch, W) |
|-------|--------|---------|----|----|---------|--------|--------|
| D7    | D6     | D5      | D4 | D3 | D2      | D1     | D0     |
| 7     | 6      | 5       | 4  | 3  | 2       | 1      | 0      |

Write data to embedded audio processor. Sets bit 7 of port Audio\_Base+Ch high (write buffer not available) until data is processed by the ES1869.

| Read Data Register (Audio_Base+Ch, |    |    |    |    |    |    |    |  |
|------------------------------------|----|----|----|----|----|----|----|--|
| D7                                 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
| 7                                  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |

#### **Bit Definitions:**

| <u>Bits</u> Name | Description                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 BUSY<br>flag   | 1 = write buffer not available or ES1869 busy.<br>0 = write buffer available or ES1869 not busy.                                                                               |
| 6                | <ul> <li>1 = Data available in read buffer.</li> <li>0 = Data not available in read buffer.</li> <li>This flag is reset by a read from port</li> <li>Audio_Base+Ah.</li> </ul> |
| 5                | 1 = Extended mode FIFO Full (256 bytes loaded).                                                                                                                                |
| 4                | 1 = Extended mode FIFO Empty (0 bytes loaded).                                                                                                                                 |
| 3                | 1 = FIFO Half Empty, Extended mode flag.                                                                                                                                       |
| 2                | 1 = ES1869 processor generated an interrupt<br>request (e.g., from Compatibility mode DMA<br>complete).                                                                        |
| 1                | 1 = Interrupt request generated by FIFO Half<br>Empty flag change. Used by programmed I/O<br>interface to FIFO in Extended mode.                                               |
| 0                | 1 = Interrupt request generated by DMA counter overflow in Extended mode.                                                                                                      |

#### Read Buffer Status Register (Audio\_Base+Eh, R)

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----|----|----|----|----|----|----|
| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |

A read from port Audio\_Base+Eh will reset any interrupt request.

#### Bit Definitions:

7

1 = Data available in read buffer. 0 = Data not available in read buffer. This flag is reset by a read from port Audio\_Base+Ah.

(Audia Dea

#### Programmed I/O Access to FIFO Register

|    |    |    |    | (A) |    | ase+ri | I, K/W) |
|----|----|----|----|-----|----|--------|---------|
| D7 | D6 | D5 | D4 | D3  | D2 | D1     | D0      |
| 7  | 6  | 5  | 4  | 3   | 2  | 1      | 0       |

This port can be used to replace Extended mode DMA with programmed I/O.

### **FM Device**

The FM synthesizer operates in two different modes: Emulation mode and Native mode. In Emulation mode the FM synthesizer is fully compatible with the OPL3 FM synthesizer. In Native mode the FM synthesizer has increased capabilities and performance for more realistic music. The following register descriptions are for Emulation mode only.

| FM Sta | FM Status (FM_Base+0h, R) |     |   |   |   |   |   |  |  |
|--------|---------------------------|-----|---|---|---|---|---|--|--|
| IRQ    | FT1                       | FT2 | 0 | 0 | 0 | 0 | 0 |  |  |
| 7      | 6                         | 5   | 4 | 3 | 2 | 1 | 0 |  |  |

Reading this register returns the overflow flags for timers 1 and 2 and the "interrupt request" from these timers (this is not a real interrupt request but is supported as a status flag for backward compatibility with the OPL3 FM synthesizer).

| FM Lov | v Bank | Addres |    | (FM_ | Base+ | 0h, W) |    |
|--------|--------|--------|----|------|-------|--------|----|
| A7     | A6     | A5     | A4 | A3   | A2    | A1     | A0 |
| 7      | 6      | 5      | 4  | 3    | 2     | 1      | 0  |

Low bank register address.

**NOTE:** Any write to this register will also put the FM synthesizer in Emulation mode if it is currently in Native mode.



I/O PORTS

| FM Dat | a Write | (FM_ | Base+ | 1h, W) |    |    |    |
|--------|---------|------|-------|--------|----|----|----|
| D7     | D6      | D5   | D4    | D3     | D2 | D1 | D0 |
| 7      | 6       | 5    | 4     | 3      | 2  | 1  | 0  |

FM register write. The data written to FM\_Base+1h is written to the current address FM register. Note that register writes must follow the timing requirements of the OPL3 FM synthesizer.

|   | FM Hig | h Bank | <pre></pre> | SS |    | (FM_ | Base+ | 2h, W) |
|---|--------|--------|-------------|----|----|------|-------|--------|
| ĺ | A7     | A6     | A5          | A4 | A3 | A2   | A1    | A0     |
| 1 | 7      | 6      | 5           | 4  | 3  | 2    | 1     | 0      |

High bank register address.

| FM Dat | a Write | ;  |    | (FM_ | Base+ | 3h, W) |    |
|--------|---------|----|----|------|-------|--------|----|
| D7     | D6      | D5 | D4 | D3   | D2    | D1     | D0 |
| 7      | 6       | 5  | 4  | 3    | 2     | 1      | 0  |

FM register write. Writing to this register in Emulation mode is the same as writing to register FM\_Base+1h.

#### MPU-401 Device

| MPU-4 | 01 Data | 3  |    | (N | IPU_B | ase+0h | n, R/W) |
|-------|---------|----|----|----|-------|--------|---------|
| D7    | D6      | D5 | D4 | D3 | D2    | D1     | D0      |
| 7     | 6       | 5  | 4  | 3  | 2     | 1      | 0       |

This register is used to read data from the MPU-401 receive FIFO or a command acknowledge byte (0FEh). This register is also used to write data to the MPU-401 transmit FIFO.

| MPU-40 | 01 Con | nmand |    | (MPU_ | Base+ | 1h, W) |    |
|--------|--------|-------|----|-------|-------|--------|----|
| D7     | D6     | D5    | D4 | D3    | D2    | D1     | D0 |
| 7      | 6      | 5     | 4  | 3     | 2     | 1      | 0  |

The MPU-401 device accepts only two commands:

- FFh Reset/return to Smart mode. This command generates an acknowledge byte if received when already in Smart mode.
- 3Fh Go to UART mode. This command generates an acknowledge byte if received while in Smart mode. It is ignored if the device is already in UART mode.

| MPU-40 | 01 Stat | us |   | (MPU_ | Base- | ⊦1h, R) |   |
|--------|---------|----|---|-------|-------|---------|---|
| -RR    | -TR     | Х  | Х | Х     | Х     | Х       | Х |
| 7      | 6       | 5  | 4 | 3     | 2     | 1       | 0 |

#### **Bit Definitions:**

| Bits Name | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| 7         | 0 = read data available in the receive FIFO, or pending acknowledge byte to be read (0FEh). |
| 6         | 0 = there is room in the transmit FIFO to accept another byte.                              |

#### **Joystick Device**

The joystick device uses only a single I/O port. The device can function in one of two modes: Analog mode or Digital mode. The use of this I/O port is different depending on the mode. This section describes Analog mode. Digital mode is described in "Joystick / MIDI External Interface" on page 23.

| Joystic | k_Bas | e+0h |   |   |   |   | (W) |
|---------|-------|------|---|---|---|---|-----|
| Х       | Х     | Х    | Х | Х | Х | Х | Х   |
| 7       | 6     | 5    | 4 | 3 | 2 | 1 | 0   |

Any value written to the Joystick\_Base+0h port will restart the timing sequence. This should be done before reading the timer status flags.

| Joystick_Base+0h (R) |     |     |     |    |    |    |    |  |  |
|----------------------|-----|-----|-----|----|----|----|----|--|--|
| SWD                  | SWC | SWB | SWA | TD | TC | ΤB | TA |  |  |
| 7                    | 6   | 5   | 4   | 3  | 2  | 1  | 0  |  |  |

SW(A-D) return the current state of the joystick switch inputs. T(A-D) return the current state of the four one-shot timers connected to the X and Y resistors of the dual joysticks.

**PROGRAMMING THE ES1869** 



## **PROGRAMMING THE ES1869**

#### **Identifying the ES1869**

The ES1869 may be identified by reading mixer register 40h successively. It returns the following values on four successive reads:

18h, 69h, A[11:0], A[7:0]

where 18h and 69h are data reads indicating the part number (1869), and A[11:0] is the base address of the configuration device.

### Resetting the ES1869 by Software

The chip can be reset in either of two ways: hardware and software reset. The hardware reset signal comes from the ISA bus. Software reset is controlled by bit 0 of port Audio\_Base+6h.

To reset the ES1869 by software:

- 1. Write 1h to port Audio\_Base+6h.
- 2. Delay a short period, for example, by reading back Audio\_Base+6h.
- 3. Write 0h to port Audio\_Base+6h.
- 4. In a loop that lasts at least 1 millisecond, poll port Audio\_Base+Eh bit 7 for Read-Data-Available.

If bit 7 is high, read the byte from port Audio\_Base+Ah. Exit the loop if the content is 0AAh; otherwise, continue polling.

Both hardware and software reset:

- Disable Extended mode.
- Reset the timer divider and filter registers for 8 kHz sampling.
- Stop any DMA transaction in progress.
- Clear any active interrupt request.
- Disable voice input of mixer (see the D1h/ D3h commands).
- Reset Compatibility mode and Extended mode DMA counters to 2048 bytes.
- Set analog direction to be DAC, with the DAC value set to mid-level.
- Set input volume for 8-bit recording with Automatic Gain Control (AGC) to maximum.
- Set input volume for 16-bit recording to mid-range

In addition to performing actions on the above list, a hardware reset resets all mixer registers to default values.

#### **Modes of Operation**

The ES1869 can operate the first audio channel in one of two modes: Compatibility mode or Extended mode.

In both modes, a set of mixer and controller registers enables application software to control the analog mixer, record source, and output volume. Programming the ES1869 Enhanced Mixer is described later in this document. See "Programming the ES1869 Mixer" on page 52.

#### **Compatibility Mode Description**

The first mode, Compatibility mode, is compatible to the Sound Blaster Pro. This is the default mode after reset. In this mode, the ES1869 microcontroller is an intermediary in all functions between the ISA bus and the CODEC. The ES1869 microcontroller performs limited FIFO functions using 64 bytes of internal memory.

#### Extended Mode Description

The ES1869 also supports an Extended mode of operation. In this case, a 256-byte FIFO is used as an intermediary between the ISA bus and the ADC and DAC Control registers, and various Extended mode controller registers are used for control. The ES1869 microcontroller is mostly idle in this mode. DMA control is handled by dedicated logic. Programming for Extended mode operation requires accessing various control registers with ES1869 commands. Some of these commands are also useful for Compatibility mode, such as those that configure DMA and IRQ channels.



#### Table 13 Comparison of Operation Modes

|                                               | Compatibility Mode<br>(Sound Blaster Pro) | Extended Mode                |
|-----------------------------------------------|-------------------------------------------|------------------------------|
| Sound Blaster Pro compatible                  | Yes                                       | No                           |
| FIFO Size                                     | 64 bytes (firmware managed)               | 256 bytes (hardware managed) |
| Mono 8-bit ADC, DAC                           | Yes, to 44 kHz                            | Yes, to 48 kHz               |
| Mono 16-bit ADC, DAC                          | Yes, to 22 kHz                            | Yes, to 48 kHz               |
| Stereo 8-bit DAC                              | Yes, to 22 kHz                            | Yes, to 48 kHz               |
| Stereo 8-bit ADC                              | Yes, to 22 kHz                            | Yes, to 48 kHz               |
| Stereo 16-bit DAC                             | Yes, to 11 kHz                            | Yes, to 48 kHz               |
| Stereo 16-bit ADC                             | No                                        | Yes, to 48 kHz               |
| Signed/Unsigned Control                       | No                                        | Yes                          |
| Automatic Gain Control during recording       | Firmware controlled, to 22 kHz, mono only | No                           |
| Programmed I/O block transfer for ADC and DAC | No                                        | Yes                          |
| FIFO status flags                             | No                                        | Yes                          |
| Auto reload DMA                               | Yes                                       | Yes                          |
| Time base for programmable timer              | 1 MHz or 1.5 MHz                          | 800 kHz or 400 kHz           |
| ADC and DAC jitter                            | ± 2 microseconds                          | None                         |

#### **Mixing Modes Not Recommended**

Avoid mixing Extended mode commands with Compatibility mode commands. The Audio 1 DAC Enable/ Disable commands D1h and D3h are safe to use when using Extended mode to process ADC or DAC. However, other Compatibility mode commands can cause problems. The Extended mode commands may be used to set up the DMA or IRQ channels before entering Compatibility mode.

### **Data Formats**

This section briefly describes the different audio data formats used by the ES1869.

### **Compressed Data Formats**

The ES1869 supports two types of compressed sound DAC operations: ESPCM<sup>®</sup>, which uses a variety of proprietary compression techniques developed by ESS Technology, and ADPCM, which is supported by many other sound cards but is of a lower quality.

Both ADPCM and ESPCM<sup>®</sup> are only transferred using DMA transfer. The first block of a multiple-block transfer uses a different command than subsequent blocks. The first byte of the first block is called the reference byte.

Use Compatibility mode when transferring compressed data.

## Sound Blaster Pro Compatible Data Formats

There are four formats available from the combination of the following two options:

- 8-bit or 16-bit
- Mono or stereo

The 8-bit samples are unsigned, ranging from 0h to 0FFh, with the DC-levels around 80h.

16-bit samples are unsigned, ranging from 0000h to 0FFFFh, with the DC-levels around 8000h.

### Stereo DMA Transfers in Compatibility Mode

Stereo DMA transfers are only available using DMA rather than Direct mode commands.

To perform a stereo DMA transfer, first set bit 1 of mixer register 0Eh high. Then set the timer divider to twice the per-channel sample rate.

The maximum stereo transfer rate for 8-bit data is 22 kHz per channel, so for this case program the timer divider as if it were for 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel. Stereo ADC transfers for 16-bit data are not allowed in Compatibility mode.

For 8-bit data, the ES1869 expects the first byte transferred to be for the right channel, and subsequent bytes to alternate left, right etc.

PROGRAMMING THE ES1869

For 16-bit data, the ES1869 expects DMA transfers to be a multiple of 4, with repeating groups in the order:

- 1. left low byte
- 2. left high byte
- 3. right low byte
- 4. right high byte

### ES1869 Data Formats (Extended Mode and Audio 2)

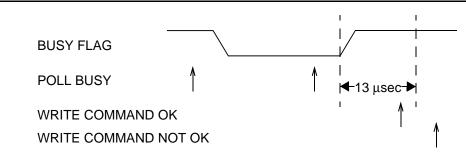
There are eight formats available from the combination of the following three options:

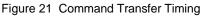
- Mono or stereo
- 8-bit or 16-bit
- Signed or unsigned

For stereo data, the data stream always alternates channels in successive samples: first left, then right. For 16-bit data, the low byte always precedes the high byte.

#### Sending Commands During DMA Operations

It is useful to understand the detailed operation of sending a command during DMA.


The ES1869 uses the Audio 1 FIFO for DMA transfers to/ from the CODEC. When the FIFO is full (in the case of DAC) or empty (in the case of ADC), DMA requests are temporarily suspended and the Busy flag (bit 7 of port Audio\_Base+Ch) is cleared. This opens a window of opportunity to send a command to the ES1869. Commands such as D1h and D3h which control the Audio 1 DAC mixer input enable/disable status, and command D0h, which suspends or pauses DMA, are acceptable to send during this window.


The ES1869 chip sets the Busy flag when the command window is no longer open. Application software must send a command within 13 microseconds after the Busy flag goes high or the command will be confused with DMA data. Sending a command within the command window is easy if polling is done with interrupts disabled.

As an example of sending a command during DMA, consider the case where the application wants to send command D0h in the middle of a DMA transfer. The application disables interrupts and polls the Busy flag. Because of the FIFO and the rules used for determining the command window, it is possible for the current DMA transfer to complete while waiting for the Busy flag to clear. In this event, the D0h command has no function, and a pending interrupt request from the DMA completion is generated.

The interrupt request can be cleared by reading port Audio\_Base+Eh before enabling interrupts or having a way of signaling the interrupt handler that DMA is inactive so that it does not try to start a new DMA transfer.

Figure 21 shows timing considerations for sending a command.





### **Compatibility Mode Programming**

This section describes Compatibility mode programming.

### **Compatibility Mode DAC Operation**

1. Reset

Write 1h to port Audio\_Base+6h.

To play a new sound without resetting the ES1869 beforehand, when the status of the analog circuits is not clear, mute the input to the mixer with command D3h to prevent pops.

2. Enable stereo mode (optional).

Set bit 1 of mixer register 0Eh high. Use only DMA mode. Clear bit 1 of mixer register 0Eh after the DAC transfer.

3. Set sample rate and filter clock.

Use commands 40h or 41h to set the sample rate and filter clock divider. To set the filter clock to be independent from the sample rate, use command 42h in addition to 40h or 41h.



For stereo transfers, set the timer divider to twice the per-channel sample rate. The maximum stereo transfer rate for 8-bit data is 22 kHz per channel; so for this case, program the first timer divider as if you were transferring data at 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel.

- 4. Set the block size. Only use this command (48h) with High-Speed DMA transfer modes (commands 90h and 91h).
- 5. Configure the system interrupt controller and system DMA controller.
- 6. Start DMA.

Start the DMA transfer by sending the command for the desired transfer type and data length. The uncompressed modes are shown in Table 14. See Table 26 for a description of the commands in addition to the commands for DMA transfers of compressed data.

| DAC DMA Transfer Mode    | Data Length | Command |
|--------------------------|-------------|---------|
| Direct                   | 8-bit       | 10h     |
|                          | 16-bit      | 11h     |
| DMA mode Normal          | 8-bit       | 14h     |
|                          | 16-bit      | 15h     |
| High-Speed               | 8-bit       | 91h     |
| DMA mode Auto-Initialize | 8-bit       | 1Ch     |
|                          | 16-bit      | 1Dh     |
| High-Speed               | 8-bit       | 90h     |

 Table 14 Uncompressed DAC Transfer Modes

- 7. Delay approximately 100 milliseconds to allow the analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.
- 8. During DMA.

For Auto-Initialize mode, it is not necessary to send any commands to the ES1869 at interrupt time, except to read Audio\_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block size if it changes. Use command 48h. To start the next transfer, use command D4h.

To stop DMA after the current auto-initialize block is finished, use command D0h.

Commands such as D1h and D3h, which control the Audio 1 DAC mixer input enable/disable status, and command D0h, which suspends DMA, are acceptable to send during DMA transfers. These commands can only be sent during certain windows of opportunity. See "Stereo DMA Transfers in Compatibility Mode" on page 44.

- 9. After DMA is finished, restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio\_Base+Ch to be sure that data transfer is completed. Delay 25 milliseconds to let the filter outputs settle to DC-levels, then disable the Audio 1 DAC input to the mixer with command D3h.
- 10.Issue another software reset to the ES1869 to initialize the appropriate registers.

## Compatibility Mode ADC Operation

ES1869 analog circuitry is switched from the DAC direction to the ADC direction by the first direct or DMA mode ADC command (2xh). Discard the first 25 to 100 milliseconds of samples because pops might occur in the data due to the change from the DAC to ADC direction. In the ADC direction the voice input to the mixer is automatically muted.

1. Reset

Write 1h to port Audio\_Base+6h.

To play a new sound without resetting the ES1869 beforehand, when the status of the analog circuits is not clear, mute the input to the mixer with command D3h to prevent pops.

2. Select the input source using register 0Ch

Sound Blaster Pro has three recording sources: microphone, line, and auxiliary A (CD). Microphone input is the default source after any reset.

The ES1869 has four recording sources: microphone, line, auxiliary A (CD), and mixer. Use mixer register 1Ch to choose the additional source.

3. Program the input volume.

The selected source passes through an input volume stage that can be programmed with 16 levels of gain from 0 to +22.5 dB in steps of 1.5 dB. In 8-bit recordings (other than High-Speed mode), the volume stage is controlled by the ES1869 firmware for the purposes of automatic gain control (AGC). In 16-bit recordings as well as High-Speed mode 8-bit recordings, the input volume stage is controllable from application software. Use command DDh to change the input volume level from 0 to 15. The reset default is mid-range, 8.

4. Enable stereo mode (optional).

Set bit 1 of mixer register 0Eh high. Use only DMA mode. Clear bit 1 of mixer register 0Eh after the ADC transfer.

PROGRAMMING THE ES1869



5. Set sample rate and filter clock.

Use commands 40h or 41h to set the sample rate and filter clock divider. If you want to set the filter clock to be independent from the sample rate, use command 42h in addition to 40h or 41h.

For stereo transfers, set the timer divider to twice the per-channel sample rate. The maximum stereo transfer rate for 8-bit data is 22 kHz per channel; so for this case, program the first timer divider as if you were transferring data at 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel.

- 6. Set the block size. Only use this command (48h) with High-Speed DMA transfer modes (commands 98h and 99h).
- 7. Configure the system interrupt controller and system DMA controller.
- 8. Start DMA.

Start the DMA transfer by sending the command for the desired transfer type and data length. The uncompressed modes are shown in Table 15. See Table 26 for a description of the commands in addition to the commands for DMA transfers of compressed data.

| ADC DMA Transfer Mode    | Data Length | Command |  |
|--------------------------|-------------|---------|--|
| Direct                   | 8-bit       | 20h     |  |
|                          | 16-bit      | 21h     |  |
| DMA mode Normal          | 8-bit       | 24h     |  |
|                          | 16-bit      | 25h     |  |
| High-Speed               | 8-bit       | 99h     |  |
| DMA mode Auto-Initialize | 8-bit       | 2Ch     |  |
|                          | 16-bit      | 2Dh     |  |
| High-Speed               | 8-bit       | 98h     |  |

Table 15 Uncompressed ADC Transfer Modes

- 9. Delay approximately 100 milliseconds to allow the analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.
- 10. During DMA.

For Auto-Initialize mode, it is not necessary to send any commands to the ES1869 at interrupt time, except to read Audio\_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block size if it changes. Use command 48h. To start the next transfer, use command D4h. To stop DMA after the current auto-initialize block is finished, use command D0h.

Commands such as D0h, which suspends DMA, are acceptable to send during DMA transfers. These commands can only be sent during certain windows of opportunity. See "Writing Commands to ES1869 Controller Registers" on page 47.

- 11. After DMA is finished, restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio\_Base+Ch to be sure that data transfer is completed.
- 12. Issue another software reset to the ES1869 to initialize the appropriate registers.

The maximum sample rate for Direct mode ADC is 22 kHz.

The maximum sample rate for DMA ADC for both 8-bit and 16-bit is 22 kHz, using commands 24h, 25h, 2Ch, or 2Dh.

There is a special High-Speed mode for ADC that allows 8-bit sampling up to 44 kHz. This mode uses commands 98h (auto-initialize) and 99h (normal). No AGC is performed as the input volume is controlled with command DDh.

## Extended Mode Programming

This section describes Extended mode programming.

### **Commanding ES1869 Controller Registers**

Controller registers are written to and read from using commands sent to ports Audio\_Base+Ch and Audio\_Base+Ah.

Commands of the format Axh, Bxh, and Cxh, where x is a numeric value, are used for Extended mode programming of the first audio channel.

Commands of the format Ax and Bx are used to access the ES1869 controller registers. For convenience, the registers are named after the commands used to access them. For example "register A4h," the Audio 1 Transfer Count Reload (low-byte) register, is written to by "command A4h."

### Enabling Extended Mode Commands

After any reset, and before using any Extended mode commands first send command C6h to enable Extended mode commands.

### ES1869 Command/Data Handshaking Protocol

This section describes how to write commands to and read data from the ES1869 controller registers.

### Writing Commands to ES1869 Controller Registers

Commands written to the ES1869 enter a write buffer. Before writing the command, make sure the buffer is not busy.



Bit 7 of port Audio\_Base+Ch is the ES1869 Busy flag. It is set when the write buffer is full or when the ES1869 is otherwise busy (for example, during initialization after reset or during Compatibility mode DMA requests).

To write a command or data byte to the ES1869 microcontroller:

1. Poll bit 7 of port Audio\_Base+Ch until it is clear.

2. Write the command/data byte to port Audio\_Base+Ch.

The following is an example of writing to ES1869 controller registers. To set up the Audio 1 Transfer Count Reload register to F800h, send the following command/data bytes:

A4h, 00h; register A4h = 0h

A5h, F8h; register A5h = F8h

**NOTE:** The port Audio\_Base+Ch write buffer is shared with Compatibility mode DMA write operations. When DMA is active, the Busy flag is cleared during windows of time when a command can be received. Normally, the only commands that should be sent during DMA operations are Dxh commands such as DMA pause/continue and Audio 1 DAC enable/disable. In this situation it is recommended to disable interrupts between the time that the Busy bit is polled and the command is written. Also, minimize the time between these instructions. See "Sending Commands During DMA Operations" on page 45 for more information.

### Reading the Read Data Buffer of the ES1869

Command C0h is used to read the ES1869 controller registers used for Extended mode. Send command C0h followed by the register number, Axh or Bxh. For example, to read register A4h, send the following command bytes:

C0h, A4h

Then poll the Read-Data-Buffer-Status bit, bit 7 of port Audio\_Base+Eh, before reading the register contents from port Audio\_Base+Ah.

The Read-Data-Buffer-Status flag can be polled by reading bit 7 of port Audio\_Base+Eh. When a byte is available, the bit is set high.

**NOTE:** Any read of port Audio\_Base+Eh also clears any active interrupt request from the ES1869. An alternate way of polling the Read-Data-Buffer-Status bit is through bit 6 of port Audio\_Base+Ch, which is the same flag. The Read-Data-Buffer-Status flag is cleared automatically by reading the byte from port Audio\_Base+Ah.

#### **Extended Mode Audio 1 DAC Operation**

Follow the steps below to program the first audio channel for Extended mode DAC operation:

1. Reset

Write 3h to port Audio\_Base+6h, instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. Reset disables the Audio 1 DAC input to the mixer. This is intended to mask any pops created during the setup of the DMA transfer.

- 2. After the reset, send command C6h to enable Extended mode commands.
- 3. Program direction and type: registers B8h, A8h, and B9h:

Register B8h: set bit 2 low for Normal DMA mode, high for Auto-Initialize DMA mode. Leave bit 3 low for the CODEC to run in the DAC direction.

Register A8h: read this register to preserve the bits and then modify only bits 1 and 0:

Bits 1:0 10: Mono

Bits 1:0 01: Stereo

Set register B9h:

- Bits 1:0 00: Single transfer DMA.
- Bits 1:0 01: Demand Transfer DMA: 2 bytes per DMA request.
- Bits 1:0 11: Demand transfer DMA: 4 bytes per DMA request.
- Clocks and counters: registers A1h, A2h, A4h and A5h: Register A1h: Sample Rate Clock Divider Register A2h: Filter Clock Divider Registers A4h/A5h: Audio 1 Transfer Count Reload register low/high byte, two's complement
- 5. Initialize and configure DACs: registers B6h and B7h: See Table 16.

Register B6h: 80h for signed data and 00h for unsigned data. This also initializes the CODEC for DAC transfer.

Register B7h: programs the FIFO (16-bit/8-bit, signed/ unsigned, stereo/mono).



| Mono | Stereo | 8-bits | 16-bits | Unsigned | Signed | Sequence                                          |
|------|--------|--------|---------|----------|--------|---------------------------------------------------|
| Х    |        | Х      |         | Х        |        | Reg B6h = 80h,<br>Reg B7h = 51h,<br>Reg B7h = D0h |
| Х    |        | Х      |         |          | Х      | Reg B6h = 00h,<br>Reg B7h = 71h,<br>Reg B7h = F0h |
| Х    |        |        | Х       | Х        |        | Reg B6h = 80h,<br>Reg B7h = 51h,<br>Reg B7h = D4h |
| Х    |        |        | Х       |          | Х      | Reg B6h = 00h,<br>Reg B7h = 71h,<br>Reg B7h = F4h |
|      | Х      | Х      |         | Х        |        | Reg B6h = 80h,<br>Reg B7h = 51h,<br>Reg B7h = 98h |
|      | Х      | Х      |         |          | Х      | Reg B6h = 00h,<br>Reg B7h = 71h,<br>Reg B7h = B8h |
|      | Х      |        | Х       | Х        |        | Reg B6h = 80h,<br>Reg B7h = 51h,<br>Reg B7h = 9Ch |
|      | Х      |        | Х       |          | Х      | Reg B6h = 00h,<br>Reg B7h = 71h,<br>Reg B7h = BCh |

Table 16 Command Sequences for DMA Playback

6. Enable/select DMA channel and IRQ channel, registers B1h and B2h:

Register B1h: Interrupt Configuration register. Make sure bits 4 and 6 are high. Clear bits 7 and 5.

Register B2h: DRQ Configuration register. Make sure bits 4 and 6 are high. Clear bits 7 and 5.

- 7. Configure system interrupt controller and DMA controller.
- 8. To start DMA:

Set bit 0 of register B8h high while preserving all other bits.

9. Delay approximately 100 milliseconds to allow analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.

10.During DMA

For Auto-Initialize transfers, read Audio\_Base+Eh to clear the interrupt request. Do not send any other commands to the ES1869 at interrupt time.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1869 Transfer Count registers if the count is changed. To start the next transfer, clear bit 0 of register B8h, then set it high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 2 of register B8h, wait for the interrupt, and then clear bit 0 of register B8h.

11. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio\_Base+Ch to be sure data transfer is completed. A delay of 25 milliseconds is required to let the filter outputs settle to DC-levels, then disable the first DMA DAC input to the mixer with command D3h.

12.Finally:

Issue another software reset to the ES1869 to initialize the appropriate registers.

## Extended Mode Audio 1 ADC Operation

Follow the steps below to program the first audio channel for Extended mode ADC operation:

**NOTE:** In Extended mode, there is no Automatic Gain Control (AGC) performed while recording. If AGC is necessary, use 16-bit recordings and perform AGC in system software.

1. Reset

Write 3h to port Audio\_Base+6h instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. Reset disables the Audio 1 DAC input to the mixer. This is intended to mask any pops created during the setup of the DMA transfer.

- 2. Send command C6h to enable Extended mode commands.
- 3. Select the input source:

The ES1869 has four recording sources: microphone, line, auxiliary A, and mixer. The mixer source can be the playback mixer or the record mixer. Bits 4:3 of mixer register 7Ah selects the mixer source. The record mixer is the default. Microphone input is the default after any reset. Select the source using the mixer control register 1Ch.

- 4. Program input volume register B4h.
- 5. Program direction and type: registers B8h, and A8h:



Register B8h: set bit 3 high to program the CODEC for the ADC direction. Set bit 2 low for Normal DMA mode, high for Auto-Initialize DMA mode.

At this point the direction of the analog circuits is ADC rather than DAC. Unless the recording monitor is enabled, there will be no output from AOUT\_L or AOUT\_R until the direction is restored to DAC.

Register A8h: read this register first to preserve the bits and modify only bits 3, 1, and 0:

- Bits 1:0 10: Mono
- Bits 1:0 01: Stereo

Bit 3 0: Disable Record Monitor for now

- Register B9h:
  - Bits 1:0 00: Single Transfer DMA
  - Bits 1:0 01: Demand Transfer: 2 bytes per DMA request
  - Bits 1:0 11: Demand Transfer: 4 bytes per DMA request
- Clocks and counters: registers A1h, A2h, A4h and A5h: Register A1h: Sample Rate Clock Divider. Set bit 7 high for sample rates greater than 22 kHz.

Register A2h: Filter Clock Divider.

Registers A4h/A5h: Audio 1 Transfer Count Reload register low/high, two's complement

- 7. Delay 100 milliseconds to allow analog circuits to settle.
- 8. Enable Record Monitor if desired:

Register A8h bit 3 = 1: Enable Record Monitor (optional).

 Initialize and configure ADC: register B7h. See Table 17. The first command sent to register B7h initializes the DAC and prevents pops.

Register B7h: programs the FIFO (16-bit/8-bit, signed/ unsigned, stereo/mono).

| Table 17 | Command | Sequence | for | DMA | Record |
|----------|---------|----------|-----|-----|--------|
|----------|---------|----------|-----|-----|--------|

| Mono | Stereo | 8-bits | 16-bits | Unsigned | Signed | Sequence                        |
|------|--------|--------|---------|----------|--------|---------------------------------|
| Х    |        | Х      |         | Х        |        | Reg B7h = 51h,<br>Reg B7h = D0h |
| Х    |        | Х      |         |          | Х      | Reg B7h = 71h,<br>Reg B7h = F0h |
| Х    |        |        | Х       | Х        |        | Reg B7h = 51h,<br>Reg B7h = D4h |
| Х    |        |        | Х       |          | Х      | Reg B7h = 71h,<br>Reg B7h = F4h |
|      | Х      | Х      |         | Х        |        | Reg B7h = 51h,<br>Reg B7h = 98h |
|      | Х      | Х      |         |          | Х      | Reg B7h = 71h,<br>Reg B7h = B8h |
|      | Х      |        | Х       | Х        |        | Reg B7h = 51h,<br>Reg B7h = 9Ch |
|      | Х      |        | Х       |          | Х      | Reg B7h = 71h,<br>Reg B7h = BCh |

10. Enable/select DMA channel and IRQ channel, registers B1h and B2h:

Register B1h: Interrupt Configuration register. Verify that bits 4 and 6 are high. Clear bits 7 and 5.

Register B2h: DRQ Configuration register: Verify that bits 4 and 6 are high. Clear bits 7 and 5.

- 11. Configure system interrupt controller and DMA controller.
- 12. To start DMA:

Set bit 0 of register B8h high. Leave other bits unchanged.

13. During DMA

For Auto-Initialize transfers, do not send any commands to the ES1869 at interrupt time, except for reading Audio\_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1869 Transfer Count registers if the count is changed. To start the next transfer, clear bit 0 of register B8h, then set it high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 2 of register B8h, wait for the interrupt, and then clear bit 0 of register B8h.

#### **PROGRAMMING THE ES1869**



14. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state.

15. Finally:

Issue another software reset to the ES1869 to initialize the appropriate registers. This returns the ES1869 to the DAC direction and turns off the record monitor.

## Extended Mode Programmed I/O Operation

The REP OUTSB instruction of the 80x86 family transfers data from memory to an I/O port specified by the DX register. The REP INSB instruction is the complementary function. Use ES1869 port Audio\_Base+Fh for block transfers.

I/O transfers to FIFO are nearly identical to the DMA process, except that an I/O access to port Audio\_Base+Fh replaces the DMA cycle. Some differences are described here.

To program in this mode it is useful to understand how the FIFO Half-Empty flag generates an interrupt request. An interrupt request is generated on the rising edge of the FIFO Half-Empty flag. This flag can be polled by reading port Audio\_Base+Ch. The meaning of this flag depends on the direction of the transfer:

DAC FIFOHE flag is set high if 0-127 bytes in FIFO

ADC FIFOHE flag is set high if 128-256 bytes in FIFO

Therefore, for DAC operations, an interrupt request is generated when the number of bytes in the FIFO changes from >= 128 to < 128. This indicates to the system processor that 128 bytes can be safely transferred without over-filling the FIFO. Before the first interrupt can be generated, the FIFO needs to be primed, or filled, with more than 128 bytes. Keep in mind that data may be taken out of the FIFO while it is being filled by the system processor. If that is the case, there may never be >= 128 bytes in the FIFO unless somewhat more than 128 bytes is transferred. Polling the ES1869 FIFOHE flag to be sure it goes low in the interrupt handler (or when priming the FIFO) and perhaps sending a second block of 128 bytes is a solution to this problem.

For ADC, the interrupt request is generated when the number of bytes in the FIFO changes from < 128 to >= 128, indicating that the system processor can safely read 128 bytes from the FIFO. Before the first interrupt can be generated, the FIFO should be emptied (or mostly so) by reading from Audio\_Base+Fh and polling the FIFOHE flag. It is not safe to use FIFO reset bit 1 of port Audio\_Base+6h indiscriminately to clear the FIFO, because it may get ADC data out-of-sync.

As in DMA mode, bit 0 of register B8h enables transfers between the system and the FIFO inside the ES1869.

**NOTE:** The ES1869 is designed for I/O block transfer up to a ISA bus speed of 8.33 MHz.

#### Programmed I/O DAC Operation

Programmed I/O DAC operation is done just as explained under "Extended Mode Audio 1 DAC Operation" on page 48 with the following exceptions:

- In step 3, programming register B9h is unnecessary.
- In step 6, leave bits 7:5 of register B2h low. Set bit 5 of register B1h high to enable an interrupt on FIFO half-empty transitions. Keep bit 6 of register B1h low.
- In step 8, in addition to setting bit 0 of register B8h high, send the REP OUTSB command.

#### Programmed I/O ADC Operation

Programmed I/O ADC operation is done just as explained under "Extended Mode Audio 1 ADC Operation" on page 49 with the following exceptions:

- In step 3, programming register B9h is unnecessary.
- In step 6, leave bits 7:5 of register B2h low. Set bit 5 of register B1h high to enable an interrupt on FIFO half-empty transitions. Keep bit 6 of register B1h low.
- In step 8, in addition to setting bit 0 of register B8h high, send the REP OUTSB command.

### Second Audio Channel DAC Operation

Follow the steps below to program the second audio channel for DAC operation.

1. Reset

Write 3h to port Audio\_Base+6h, instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. On reset the playback mixer volume for the second audio channel is set to zero, register 7Ch. This masks any pops that might occur during the setup process.

2. Program transfer type: register 78h:

Register 78h: set bit 4 low for Normal DMA mode, high for Auto-Initialize DMA mode.

| Bits 7:6 | 00: Single Transfer DMA                              |
|----------|------------------------------------------------------|
| Bits 7:6 | 01: Demand Transfer DMA:<br>2 bytes per DMA request. |
| Bits 7:6 | 10: Demand transfer DMA:<br>4 bytes per DMA request. |
| Bits 7:6 | 11: Demand transfer DMA:<br>8 bytes per DMA request. |



- Clocks and counters: registers 70h, 72h, 74h and 76h: Register 70h: Sample Rate Generator Register 72h: Filter Clock Divider Registers 74h/76h: Audio 2 Transfer Count Reload register low/high, two's complement
- 4. Initialize and configure DAC: register 7Ah. Register 7Ah:

Bit 2: set high for signed data, low for unsigned.

Bit 1: set high for stereo, low for mono.

Bit 0: set high for 16-bit samples, low for 8-bit.

- Enable IRQ channel, register 7Ah: Register 7Ah: Audio 2 Control 2 register. Bit 6 unmasks channel 2 IRQ.
- 6. Configure system interrupt controller and DMA controller.
- 7. To start DMA:
  - Set bits 1:0 of register 78h high.
- 8. Delay approximately 100 milliseconds to allow analog circuits to settle, then enable the Audio 2 DAC playback volume, register 7Ch.
- 9. During DMA

For Auto-Initialize transfers, read Audio\_Base+Eh to clear the interrupt request. Do not send any other commands to the ES1869 at interrupt time.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1869 Transfer Count registers if the count is changed. To start the next transfer, clear bits 1:0 of register 78h, then set the bits high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 4 of register 78h, wait for the interrupt, and then clear bits 1:0 of register 78h.

10.After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio\_Base+Ch to be sure data transfer is completed. A delay of 25 milliseconds is required to let the filter outputs settle to DC-levels, then disable the Audio 2 DAC input to the mixer.

## 11. Finally:

Issue another software reset to the ES1869 to initialize the appropriate registers.

## Full-Duplex DMA Mode (No DSP Serial Port)

The ES1869 supports stereo full-duplex DMA. In fullduplex (FD) mode, a second audio channel has been added to the ES1869. The second audio channel is programmed through mixer registers. The CODEC is used for recording and the Audio 2 DAC is used for playback.

- 1. Program the first audio channel as in "Extended Mode Audio 1 ADC Operation" on page 49. Extended mode registers A1h and A2h define the sample rate and filter frequency for both record and playback.
- 2. Program the second audio channel. Mixer registers 74h and 76h are set to the two's complement DMA transfer count. The second audio channel supports both Auto-Initialize and Normal modes. The playback buffer in system memory does not have to be the same size as the record buffer. When the DMA transfer count rolls over to zero, it can generate an interrupt that is independent of the interrupt generated by the first audio channel.

If the record and playback buffers are the same size, then a single interrupt can be used. Program the DMA Transfer Count Reload registers (A4h, A5h, 74h, and 76h) are programmed with the same value for both channels. Enable the second audio channel before enabling the record channel. For example, assume there are two halfbuffers in a circular buffer. When the record channel completes filling the first half, it generates an interrupt. To ensure that the playback channel is not accessing the first half at the time of the interrupt, start the playback channel first. It has a 32-word FIFO that fills quickly through DMA.

## Programming the ES1869 Mixer

The ES1869 has a set of mixer registers that is backward compatible with the Sound Blaster Pro. However, some of the registers can be accessed in an "extended" or "alternate" way, providing for greater functionality.

### Writing and Reading Data from the Mixer Registers

There are two I/O addresses used by the mixer: Audio\_Base+4h is the address port; Audio\_Base+5h is the data port. In the Sound Blaster Pro, Audio\_Base+4h is write only, while Audio\_Base+5h is read/write.

### Writing Data to the ES1869 Mixer Registers

To set a mixer register, write its address to Audio\_Base+4h, then write the data to Audio\_Base+5h.

### Reading Data from the ES1869 Mixer Registers

To read the register, write its address to Audio\_Base+4h, then read the data from Audio\_Base+5h.

**PROGRAMMING THE ES1869** 



(14h R/W)

#### **Resetting the Mixer Registers**

The mixer registers are not affected by software reset. To reset the registers to initial conditions, write any value to mixer register 00h:

- 1. Write 00h to Audio\_Base+4h (select mixer register to 00h).
- 2. Write 00h to Audio\_Base+5h (write 00h to the selected mixer register).

### Extended Access to SB Pro Mixer Volume Controls

The Sound Blaster Pro Mixer Volume controls are mostly 3 bits per channel. See the Sound Blaster Compatibility register 04h in Table 23 for details. Bits 0 and 4 are always high when read. The ES1869 offers an alternate way to write each mixer register. Use the "extended access" registers for volume control of 4 bits per channel. If the Sound Blaster Pro compatible interface is used, bits 0 and 4 are cleared by a write and forced high on all reads. See Table 18 for a list of Sound Blaster Pro registers and the extended access counterparts.

| Table 18 S | Sound Blaster | Pro/Extended | Access | Registers |
|------------|---------------|--------------|--------|-----------|
|------------|---------------|--------------|--------|-----------|

| Register | Function        | Extended Access Register<br>for 4 bits/Channel |
|----------|-----------------|------------------------------------------------|
| 04h      | Voice volume    | 14h                                            |
| 22h      | Master volume   | 32h                                            |
| 26h      | FM volume       | 36h                                            |
| 28h      | CD (Aux) volume | 38h                                            |
| 2Eh      | Line volume     | 3Eh                                            |

For example, if you write 00h to Sound Blaster Pro register 04h, you will read back 11h because bits 0 and 4 are "stuck high" on reads. Inside the register, these bits are "stuck low," so that writing 00h is the same as writing 11h.

A write or read to address 14h instead of 04h allows direct access to all 8 bits of this mixer register.

### **Extended Access to Mic Mix Volume**

If Sound Blaster Compatibility mode register address 0Ah is used to control Mic Mix Volume, only bits 2 and 1 are significant. Bit 0 is stuck high on reads and stuck low on writes. Since this is a mono control, panning is not supported.

For extended access, use register address 1Ah instead. Register 1Ah offers 4 bits-per-channel for pan control of the mono microphone input to the mixer.

|   |         |            |    |   |            |           | ,, |  |
|---|---------|------------|----|---|------------|-----------|----|--|
|   | Mic mix | volume lef | ťt | Μ | lic mix vo | lume rigł | nt |  |
| 7 | 6       | 5          | 4  | 3 | 2          | 1         | 0  |  |

Mic Mix Volume

Access to register 1Ah through address 0Ah is mapped as follows:

|              | 1                                  |                      |  |  |
|--------------|------------------------------------|----------------------|--|--|
| Write to 0Ah | D2=0, D1=0                         | Mic mix volume = 00h |  |  |
|              | D2=0, D1=1                         | Mic mix volume = 55h |  |  |
|              | D2=1, D1=0                         | Mic mix volume = AAh |  |  |
|              | D2=1, D1=1                         | Mic mix volume = FFh |  |  |
| Read from    | D2 = Mic Mix Volume register bit 3 |                      |  |  |
| 0Ah          | D1 = Mic Mix Volume register bit 2 |                      |  |  |
|              | D0 = 1                             |                      |  |  |
|              | others are undefined.              |                      |  |  |

#### Extended Access to ADC Source Select

In Sound Blaster Compatibility mode in the Sound Blaster Pro mixer, there are three choices for recording source, set by bits 2 and 1 of mixer register 0Ch. Note that bit 0 is set to zero upon any write to 0Ch and set to one upon any read from 0Ch:

| D2 | D1 | Source Selected      |  |
|----|----|----------------------|--|
| 0  | 0  | Microphone (default) |  |
| 0  | 1  | CD (Aux) input       |  |
| 1  | 0  | Microphone           |  |
| 1  | 1  | Line input           |  |

For extended access, use register address 1Ch to select recording from the mixer as follows:

| D2 | D1 | D0 | Source Selected                                                                                                         |
|----|----|----|-------------------------------------------------------------------------------------------------------------------------|
| х  | 0  | х  | Microphone (default)                                                                                                    |
| 0  | 1  | х  | CD (Aux) input                                                                                                          |
| 1  | 1  | 0  | Line input                                                                                                              |
| 1  | 1  | 1  | Mixer * (Bits 4:3 of Mixer register 7Ah deter-<br>mine if the mixer input source is the play-<br>back or record mixer). |



## Sound Blaster Pro Volume Emulation

Sound Blaster Pro emulations for master volume means that the 6-bit volume counters can be written through the Sound Blaster Pro mixer register 22h (or 32h). Sound Blaster Pro emulation is enabled by default, and can be disabled by setting bit 0 of mixer register 64h.

The master volume registers 60h and 62h can always be read, regardless of whether Sound Blaster Pro volume emulation is enabled, using the Sound Blaster Pro mixer registers 22h (and 32h). The following 6-bit to 4-bit translation table is used.

 Table 19
 SB Pro Read Volume Emulation

| Mute | Mute Master Volume |    | Value Read<br>at 22h |
|------|--------------------|----|----------------------|
| 1    | xx                 | 0  | 1                    |
| 0    | 0-24               | 1  | 1                    |
| 0    | 25-30              | 2  | 3                    |
| 0    | 31-34              | 3  | 3                    |
| 0    | 35-38              | 4  | 5                    |
| 0    | 39-42              | 5  | 5                    |
| 0    | 43-46              | 6  | 7                    |
| 0    | 47-50              | 7  | 7                    |
| 0    | 51-54              | 8  | 9                    |
| 0    | 55                 | 9  | 9                    |
| 0    | 56-57              | 10 | 11                   |
| 0    | 58                 | 11 | 11                   |
| 0    | 59-60              | 12 | 13                   |
| 0    | 61                 | 13 | 13                   |
| 0    | 62                 | 14 | 15                   |
| 0    | 63                 | 15 | 15                   |

If Sound Blaster Pro volume emulation is enabled, then a mixer reset causes both left and right channels to be set to their power-on defaults, namely 54 (36h).

If Sound Blaster Pro volume emulation is enabled, then a write to mixer register 22h (or 32h) causes both left and right master volume registers to be changed as follows:

| Table 20 SB Pro Write Volume Emulation |      |              |  |  |  |  |
|----------------------------------------|------|--------------|--|--|--|--|
| Value written to 22h or 32h            | Mute | 6-Bit Volume |  |  |  |  |
| 0                                      | 1    | 24           |  |  |  |  |
| 1                                      | 0    | 24           |  |  |  |  |
| 2                                      | 0    | 30           |  |  |  |  |
| 3                                      | 0    | 34           |  |  |  |  |
| 4                                      | 0    | 38           |  |  |  |  |
| 5                                      | 0    | 42           |  |  |  |  |
| 6                                      | 0    | 46           |  |  |  |  |
| 7                                      | 0    | 50           |  |  |  |  |
| 8                                      | 0    | 54           |  |  |  |  |
| 9                                      | 0    | 55           |  |  |  |  |
| 10                                     | 0    | 56           |  |  |  |  |
| 11                                     | 0    | 58           |  |  |  |  |
| 12                                     | 0    | 59           |  |  |  |  |
| 13                                     | 0    | 61           |  |  |  |  |
| 14                                     | 0    | 62           |  |  |  |  |
| 15                                     | 0    | 63           |  |  |  |  |

#### ES1869 DATA SHEET

**PROGRAMMING THE ES1869** 

#### **Record and Playback Mixer**

The ES1869 has stereo mixers for playback and record. Each stereo mixer has eight input sources, each with independent 4-bit left and right volume controls. For each 4-bit volume control, level 0 is mute and level 15 is maximum volume. The ES1869 mixers use a dual slope method for selecting volume. Each increase of one step in volume from settings 1 to 8 results in a +3 dB increase. Each increase of one step in volume from settings 8 to 15 results in a +1.5 dB increase.

| Table 21 Extended Access Mixer Volume Values |
|----------------------------------------------|
|----------------------------------------------|

|                | Volume in Decibels (dB) |                        |                          |                                    |  |  |  |
|----------------|-------------------------|------------------------|--------------------------|------------------------------------|--|--|--|
| 4-Bit<br>Value | Audio 1ª<br>(Record)    | Audio 2⁵<br>(Playback) | Mic,<br>MusicDAC,<br>I²S | AuxA,<br>AuxB,<br>Line,<br>Mono-In |  |  |  |
| 15             | +1.5                    | 0                      | +10.5                    | +3.0                               |  |  |  |
| 14             | 0                       | -1.5                   | +9.0                     | +1.5                               |  |  |  |
| 13             | -1.5                    | -3.0                   | +7.5                     | 0                                  |  |  |  |
| 12             | -3.0                    | -4.5                   | +6.0                     | -1.5                               |  |  |  |
| 11             | -4.5                    | -6.0                   | +4.5                     | -3.0                               |  |  |  |
| 10             | -6.0                    | -7.5                   | +3.0                     | -4.5                               |  |  |  |
| 9              | -7.5                    | -9.0                   | +1.5                     | -6.0                               |  |  |  |
| 8              | -9.0                    | -10.5                  | 0                        | -7.5                               |  |  |  |
| 7              | -12.0                   | -13.5                  | -3.0                     | -10.5                              |  |  |  |
| 6              | -15.0                   | -16.5                  | -6.0                     | -13.5                              |  |  |  |
| 5              | -18.0                   | -19.5                  | -9.0                     | -16.5                              |  |  |  |
| 4              | -21.0                   | -22.5                  | -12.0                    | -19.5                              |  |  |  |
| 3              | -24.0                   | -25.5                  | -15.0                    | -22.5                              |  |  |  |
| 2              | -27.0                   | -28.5                  | -18.0                    | -25.5                              |  |  |  |
| 1              | -30.0                   | -31.5                  | -21.0                    | -28.5                              |  |  |  |
| 0              | mute                    | mute                   | mute                     | mute                               |  |  |  |

a. Audio 1 DAC mixer input is gated by the Sound Blaster "Speaker On" control. This control bit is toggled by the D1 (on) and D3 (off) Sound Blaster commands.

b. In Telegaming mode (enabled by bit 0 of mixer register 48h when in Serial mode), the audio 2 DAC mixer input volume is slaved to the audio 1 DAC mixer input volume.

#### Table 22 Mixer Input Volume Registers

| Mixer Input                                     | Playback Volume<br>Register | Record Volume<br>Register |  |  |
|-------------------------------------------------|-----------------------------|---------------------------|--|--|
| Audio 1                                         | 14h                         | -                         |  |  |
| Audio 2                                         | 7Ch                         | 69h                       |  |  |
| Microphone                                      | 1Ah                         | 68h                       |  |  |
| Music DAC (FM/<br>ES689/ES69x/I <sup>2</sup> S) | 36h                         | 6Bh                       |  |  |
| AuxA (CD)                                       | 38h                         | 6Ah                       |  |  |
| AuxB                                            | 3Ah                         | 6Ch                       |  |  |
| Line                                            | 3Eh                         | 6Eh                       |  |  |
| Mono In                                         | 6Dh                         | 6Fh                       |  |  |





## **Register Types**

#### Types of Register Access

There are two types of audio registers in the ES1869:

• Mixer registers.

These registers are accessed through I/O ports Audio\_Base+4h and Audio\_Base+5h. Audio\_Base+4h is written with the register address. Then the register can be read written through Audio\_Base+5h. These registers control many functions other than the mixer.

• Controller registers.

These registers are used to control Extended mode DMA playback and record through the first audio channel. Controller registers are accessed through an extension to the Sound Blaster common interface. This interface uses I/O ports Audio\_Base+Ah, Audio\_Base+Ch, and Audio\_Base+Eh to transfer read data, write data/ commands, and status respectively.

#### Mixer Registers

There are two types of mixer registers. Sound Blaster Pro Compatible mixer registers are fully compatible with the Sound Blaster Pro. ESS mixer registers are specific to ESS Technology, Inc. ES1869 *AudioDrive®* chips, although many registers are shared throughout the *AudioDrive®* family of chips.

#### Sound Blaster Pro Compatible Mixer Registers

This section provides a summary of Sound Blaster Pro compatible mixer registers in the ES1869 and some comments on the characteristics of these registers.

| Reg | D7                                             | D6                 | D5   | D4        | D3         | D2                     | D1     | D0 | Description          |
|-----|------------------------------------------------|--------------------|------|-----------|------------|------------------------|--------|----|----------------------|
| 00h |                                                |                    |      | Write: re | eset mixer |                        |        |    | Mixer reset          |
| 04h | DAC play volume left X DAC play volume right X |                    |      |           |            |                        |        | Х  | DAC playback volume  |
| 0Ah | Х                                              | Х                  | Х    | Х         | Х          | X Mic mix volume X     |        | Х  | Mic mix volume       |
| 0Ch | Х                                              | Х                  | F1 * | Х         | F0 *       | ADC source             |        | Х  | See note for F0, F1. |
| 0Eh | Х                                              | Х                  | F2 * | Х         | Х          | Х                      | Stereo | Х  | See note for F2.     |
| 22h | Ма                                             | Master volume left |      |           | Mas        | ster volume            | right  | Х  | Master volume        |
| 26h | F                                              | M volume le        | eft  | Х         | FI         | VI volume rig          | ght    | Х  | Music DAC volume     |
| 28h | AuxA (CD) volume left                          |                    |      | Х         | AuxA       | AuxA (CD) volume right |        |    | AuxA (CD) volume     |
| 2Eh | L                                              | ine volume l       | eft  | Х         | Lir        | Line volume right      |        |    | Line volume          |

Table 23 Sound Blaster Compatibility Register Summary

\* Sound Blaster Filter Control bits F2, F1, and F0 have no equivalent function in the ES1869 and are ignored.

#### **Filter Control Bits**

The Sound Blaster Pro mixer has three bits that control input and output filters. They are labeled F0, F1, and F2 in Table 23 and Table 24. They have no equivalent function in the ES1869 and their values are ignored.

#### **Mixer Stereo Control Bit**

Bit 1 of register 0Eh is the Mixer Stereo Control bit. It is normally zero. Set this bit high to enable Sound Blaster Pro compatible stereo DAC functions. In this case, program the DAC sample rate to be twice the sample rate of each channel. For example, for 22 kHz stereo, program the "sample rate" to be 44 kHz using command 40h. This bit enables stereo only for DMA transfer to the DAC in Compatibility mode. It should not be used in Extended mode.

Clear this bit after completing the stereo DMA transfer, because this bit is unaffected by software reset (only mixer reset).

See also "Stereo DMA Transfers in Compatibility Mode" on page 44.

#### **ESS Mixer Registers**

This section provides a summary of the ESS mixer registers followed by a detailed description of each register.

## Table 24 ESS Mixer Registers Summary

|     | 24 ESS M                      | -                   |                         |                                    | <b>D</b> 2         | <b>D</b> 2          | DI                            | <b>D0</b>                               | Dowork                           |
|-----|-------------------------------|---------------------|-------------------------|------------------------------------|--------------------|---------------------|-------------------------------|-----------------------------------------|----------------------------------|
| Reg | D7                            | D6                  | D5                      | D4                                 | D3                 | D2                  | D1                            | D0                                      | Remark                           |
| 00h |                               | A                   |                         | Write: re                          | eset mixer         |                     |                               |                                         | Reset mixer                      |
| 14h |                               |                     | volume left             |                                    |                    |                     | y volume righ                 | t                                       | Audio 1 play volume              |
| 1Ah |                               |                     | olume left<br>F1        | Muto                               | F0                 |                     | olume right                   |                                         | Mic mix volume                   |
| 1Ch | x                             | X                   | plume left              | Mute                               | FU                 |                     |                               | source                                  | Maatar valuma                    |
| 32h |                               |                     |                         |                                    |                    |                     | olume right                   | Master volume                           |                                  |
| 36h |                               |                     | ume left<br>volume left |                                    |                    |                     | ume right<br>volume right     |                                         | FM volume                        |
| 38h |                               | ( )                 |                         |                                    |                    | ( )                 | 0                             |                                         | AuxA (CD) volume                 |
| 3Ah |                               | AUXB VO             | lume left               |                                    |                    | 1                   | lume right                    |                                         | AuxB volume                      |
| 3Ch |                               | Line vol            | umo loft                |                                    |                    |                     | Speaker vol                   | ume                                     | PC speaker volume                |
| 3Eh |                               | Line voi            |                         |                                    | tificantina conte  |                     | ume right                     |                                         | Line volume                      |
| 40h | lanut                         |                     |                         | E21869 Iden                        | tification valu    | e                   |                               |                                         | Read-only                        |
| 42h | Input<br>override             | Reco                | ord Source S            | elect                              |                    | Recor               | rd Level                      |                                         | Serial mode input control        |
| 44h | Master<br>volume<br>override  |                     |                         |                                    |                    | Master              | r volume                      |                                         | Serial mode output control       |
| 46h | Analog<br>control<br>override | Music<br>mixer test | Left ADC                | Right ADC                          | Mono               | x                   | FDXO<br>enable                | FDXI<br>enable                          | Serial mode analog control       |
| 48h | SE                            | Two's<br>comp       | Serial<br>reset         | Enable<br>ES689/<br>ES69x<br>intfc | Active low<br>sync | 1: DSP<br>test mode | Enable 1st<br>DMA in<br>SMODE | 0                                       | Serial mode control              |
| 4Ah | 0                             |                     |                         | Two's                              | complement         | divisor             |                               |                                         | FSX/FSR rate control (test)      |
| 4Ch | Filter over-<br>ride          | 0                   | 0                       | 0                                  | Т                  | wo's compler        | nent filter divi              | ider                                    | Serial mode filter divider       |
| 4Eh | TX<br>SRC1                    | TX<br>SRC0          | TX 16/8                 | TX<br>stereo/<br>mono              | RX<br>SRC1         | RX<br>SRC0          | RX 16/8                       | RX<br>stereo/<br>mono                   | Serial mode format/source/target |
| 50h | 0                             | 0                   | 0                       | 0                                  | 1:Enable<br>3-D    | 0:Reset             | 0                             | 0                                       | 3-D enable                       |
| 52h | 0                             | 0                   |                         |                                    | 3-D                | level               | •                             |                                         | 3-D level                        |
| 60h | 0                             | 1:Mute              |                         |                                    | Left mas           | ter volume          |                               |                                         | Left master volume and mute      |
| 61h | 0                             | 1:Mute              |                         |                                    | Left volu          | me counter          |                               |                                         | Hardware volume control counter  |
| 62h | 0                             | 1:Mute              |                         |                                    | Right mas          | ster volume         |                               |                                         | Right master volume and mute     |
| 63h | 0                             | 1:Mute              |                         |                                    | Right volu         | ime counter         |                               |                                         | Hardware volume control counter  |
| 64h | 1:Split<br>mode               | MPU-401<br>int mask | 1:Count<br>by 3         | Read-only<br>HMV int<br>request    | Мо                 | ode                 | HMV<br>int mask               | Disable SB<br>Pro master<br>vol control | Master volume control            |
| 65h |                               |                     |                         |                                    |                    |                     |                               | Opamp cal-<br>ibration                  | Opamp calibration control        |
| 66h |                               | •                   | Clear I                 | nardware vol                       | ume interrupt      | request             | •                             |                                         | Write-only                       |
| 68h |                               | Mic record          | volume left             |                                    |                    | Mic record          | Mic record volume             |                                         |                                  |
| 69h |                               | Audio 2 reco        | rd volume left          | :                                  |                    | Audio 2 reco        | Audio 2 record volume         |                                         |                                  |
| 6Ah | A                             | uxA (CD) rec        | ord volume le           | eft                                | A                  | uxA (CD) rec        | AuxA (CD) record volume       |                                         |                                  |
| 6Bh | М                             | usic DAC rec        | ord volume le           | eft                                | М                  | usic DAC rec        | Music DAC record volume       |                                         |                                  |
| 6Ch |                               |                     | l volume left           |                                    |                    | AuxB record         | AuxB record volume            |                                         |                                  |
| 6Dh |                               |                     | In play mix             |                                    |                    |                     |                               |                                         | Mono_In play mix                 |
|     |                               |                     | volume left             |                                    | <u> </u>           | 8                   | volume right                  | Line record volume                      |                                  |





Table 24 ESS Mixer Registers Summary (Continued)

| Reg | D7                                          | D6           | D5                                                                                                                        | D4                            | D3                                | D2                                 | D1                                      | D0                                                 | Remark                              |
|-----|---------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------|
| 6Fh | I                                           | Mono_In reco | rd volume lef                                                                                                             | ťt                            | 1                                 | Mono_In reco                       | ord volume rig                          | ht                                                 | Mono_In record volume               |
| 70h | Master<br>clock                             |              |                                                                                                                           | Two's c                       | omplement ra                      | ate divider                        |                                         |                                                    | Audio 2 sample rate                 |
| 71h | 0 0                                         |              | 1:New reg<br>A1h         1:4x mode         1:SCF2<br>bypass         1:SCF1<br>bypass         1:Async<br>mode         1:FI |                               | 1:FM mix                          | Audio 2 mode                       |                                         |                                                    |                                     |
| 72h |                                             |              |                                                                                                                           | Audio 2 filter clock rate     |                                   |                                    |                                         |                                                    |                                     |
| 74h |                                             |              |                                                                                                                           | Audio 2 transfer count reload |                                   |                                    |                                         |                                                    |                                     |
| 76h | Two's complement transfer count – high byte |              |                                                                                                                           |                               |                                   |                                    |                                         |                                                    |                                     |
| 78h | Single/demand<br>transfer                   |              | 0                                                                                                                         | 1: Auto-<br>initialize        | 0                                 | 0                                  | 0<br>Enable<br>second<br>channel<br>DMA |                                                    | Audio 2 control 1                   |
| 7Ah | 2nd chan-<br>nel IRQ                        | IRQ mask     | 0                                                                                                                         | 0                             | 0                                 | Data sign                          | Stereo<br>/Mono                         | 16-bit<br>/8-bit                                   | Audio 2 control 2                   |
| 7Ch |                                             | Left chanr   | nel volume                                                                                                                |                               |                                   | Right char                         | nnel volume                             |                                                    | Audio 2 DAC mixer volume            |
| 7Dh | 0                                           | 0            | 0                                                                                                                         | 0                             | Enable<br>+26 dB<br>mic amp       | Mono_Out source<br>select          |                                         | Enable<br>Mono_In<br>mix w/<br>AOUTL/R             | Mic preamp, Mono_In and<br>Mono_Out |
| 7Fh | Reserved                                    |              |                                                                                                                           | Music<br>digital<br>record    | I <sup>2</sup> S data<br>activity | I <sup>2</sup> S clock<br>activity | MODE pin                                | Enable I <sup>2</sup> S<br>connect to<br>music DAC | I <sup>2</sup> S interface          |

#### **Register Detailed Descriptions**

| Reset I                   | Mixer      |           |           |           |            | (0         | 0h, W)  | Extended Record Source (10 |         |                                          |                              |    |                        | (1CI      | n, R/W) |
|---------------------------|------------|-----------|-----------|-----------|------------|------------|---------|----------------------------|---------|------------------------------------------|------------------------------|----|------------------------|-----------|---------|
|                           |            |           | Write: re | set mixer |            |            |         | х                          | х       | F1                                       | Mute                         | F0 | Extend                 | ed record | source  |
| 7                         | 6          | 5         | 4         | 3         | 2          | 1          | 0       | 7                          | 6       | 5                                        | 4                            | 3  | 2                      | 1         | 0       |
| Audio <sup>2</sup>        | 1 Play V   | Volume    | e         |           |            | (14)       | n, R/W) | Bit Defi                   | nitions | 6:                                       |                              |    |                        |           |         |
| Aud                       | dio 1 play | volume    | left      | Auc       | lio 1 play | volume i   | right   | <u>Bits</u> N              | ame     | <u>Descri</u>                            | <u>ption</u>                 |    |                        |           |         |
| 7                         | 6          | 5         | 4         | 3         | 2          | 1          | 0       | 7:6 –                      |         | No fun                                   | ction.                       |    |                        |           |         |
| This re<br>audio c        | •          |           | •         | -         |            |            |         | 5 F                        | 1       | ••••••••                                 | lent func                    |    | ontrol bit<br>the ES18 |           |         |
| of 88h.                   |            |           |           |           |            |            |         | 4 N                        | lute    |                                          |                              | •  | the filters            |           | ording. |
| Mic Mix Volume (1Ah, R/W) |            |           |           |           |            | າ, R/W)    | 3 F     | 0                          | Sound   | Blaster I                                | Filter Control bit F0 has no |    |                        |           |         |
| Ν                         | /lic mix v | olume lef | ťt        | Ν         | lic mix vo | olume rigl | ht      |                            |         | equivalent function in the ES1869 and is |                              |    |                        | is        |         |
| 7                         | 6          | 5         | 4         | 3         | 2          | 1          | 0       |                            |         | ignore                                   | d.                           |    |                        |           |         |

| N | lic Mi | x Volun    | ne        |   | (1Ah, R/W)           |   |   |   |  |
|---|--------|------------|-----------|---|----------------------|---|---|---|--|
|   | ſ      | Mic mix vo | olume lef | ť | Mic mix volume right |   |   |   |  |
| _ | 7      | 6          | 5         | 4 | 3                    | 2 | 1 | 0 |  |

This register controls the playback volume of the Mic input. On reset, this register assumes the value of 00h.

| <u>Bits</u> | <u>Name</u> | Description                                                                                |
|-------------|-------------|--------------------------------------------------------------------------------------------|
| 7:6         | _           | No function.                                                                               |
| 5           | F1          | Sound Blaster Filter Control bit F1 ha<br>equivalent function in the ES1869 an<br>ignored. |
| 4           | Mute        | 1 = Mutes the input to the filters for re<br>This does not affect MONO_OUT.                |
| 3           | FO          | Sound Blaster Filter Control bit F0 ha<br>equivalent function in the ES1869 an<br>ignored. |
|             |             |                                                                                            |



(3Ah, R/W)

| Bits Na | ame | Description |
|---------|-----|-------------|
|---------|-----|-------------|

| 2:0 Extended Selects the record | source in Extended mode. |
|---------------------------------|--------------------------|
|---------------------------------|--------------------------|

| record | <u>Bit 2</u> | <u>Bit 1</u> | <u>Bit 0</u> | Record Source                                              |
|--------|--------------|--------------|--------------|------------------------------------------------------------|
| source | 0            | 0            | 0            | Microphone                                                 |
|        | 0            | 1            | 0            | Aux A (CD)                                                 |
|        | 1            | 0            | 0            | Microphone                                                 |
|        | 1            | 1            | 0            | Line                                                       |
|        | 0            | 0            | 1            | L channel: Mic<br>R channel: Master vol<br>input (L+R)/2 * |
|        | 0            | 1            | 1            | L channel: AOUT_L<br>R channel: AOUT_R                     |
|        | 1            | 0            | 1            | Record mixer                                               |
|        | 1            | 1            | 1            | Master volume inputs *                                     |
|        |              |              |              |                                                            |

\* The master volume inputs are the outputs of the 3-D effect before master volume is applied. However, the design of the ES1869 causes some attenuation due to master volume in some conditions before the 3-D effect. Unless the master volume is at one of the top 7 levels (0 dB, -.75 dB..-4.5 dB), there is -5.25 dB attenuation between the output of the playback mixer and the input to the 3-D effect. If the master volume is at one of the top 7 levels, the attenuation according to the master volume level is determined prior to the input of the 3-D effect.

| Μ | laste | r Volume  | e Regis   | ster |   |           | (32)      | h, R/W) |
|---|-------|-----------|-----------|------|---|-----------|-----------|---------|
|   |       | Master vo | lume left |      | Ν | Aaster vo | lume rigl | ht      |
|   | 7     | 6         | 5         | 4    | 3 | 2         | 1         | 0       |

On reset, this register assumes the value of 88h.

This register provides backward-compatible access to master volume. New applications can also use registers 60h and 62h, which have more resolution.

| FM Vo | lume Re | gister  |  |                 |   | (36ł | n, R/W) |  |
|-------|---------|---------|--|-----------------|---|------|---------|--|
|       | FM volu | me left |  | FM volume right |   |      |         |  |
| 7     | 7 6 5 4 |         |  |                 | 2 | 1    | 0       |  |

On reset, this register assumes the value of 88h.

#### AuxA (CD) Volume Register

| <br>  |            |          | egioto. |                        |   | (00) | .,, |
|-------|------------|----------|---------|------------------------|---|------|-----|
| Au    | ιxA (CD) \ | olume le | eft     | AuxA (CD) volume right |   |      |     |
| <br>7 | 6          | 5        | 4       | 3                      | 2 | 1    | 0   |

On reset, this register assumes the value of 00h.

#### AuxB Volume Register

|   |          | _        |   |   |          | -        | - |
|---|----------|----------|---|---|----------|----------|---|
|   | AuxB vol | ume left |   |   | AuxB vol | ume righ | t |
| 7 | 6        | 5        | 4 | 3 | 2        | 1        | 0 |

On reset, this register assumes the value of 00h.

| PC Speaker Volume Register | (3Ch, R/W) |
|----------------------------|------------|
|                            |            |

|   | PC sp | beaker vo | olume |   |   |   |   |
|---|-------|-----------|-------|---|---|---|---|
| 7 | 6     | 5         | 4     | 3 | 2 | 1 | 0 |

On reset, this register assumes the value of 04h.

| Line V | olume F   | Registe  | r |   |           | (3Eł      | n, R/W) |
|--------|-----------|----------|---|---|-----------|-----------|---------|
|        | Line volu | ume left |   |   | Line volu | ime right |         |
| 7      | 6         | 5        | 4 | 3 | 2         | 1         | 0       |

On reset, this register assumes the value of 00h.

| ES1869 | ES1869 Identification Value (40h, R) |   |   |   |   |   |   |  |  |  |
|--------|--------------------------------------|---|---|---|---|---|---|--|--|--|
|        | ES1869 identification value          |   |   |   |   |   |   |  |  |  |
| 7      | 6                                    | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |

To identify the ES1869, mixer register 40h returns the following values on four successive reads:

#### 18h, 69h, A[11:8], A[7:0]

where 18h and 69h are data reads indicating the part number (1869) and A[11:0] is the base address of the configuration device.

| Serial Mode    | Input  | Contr    | ol     |   |       | (42h    | , <b>R/W)</b> |
|----------------|--------|----------|--------|---|-------|---------|---------------|
| Input override | Record | d source | select |   | Recor | d level |               |
| 7              | 6      | 5        | 4      | 3 | 2     | 1       | 0             |

#### **Bit Definitions:**

(38h R/W)

Bits Name Description

7 Input 1 = The record source select and record level fields take effect and override settings in mixer registers 1Ch and B4h. Serial mode is enabled when input pin DCLK is clocking and either the external pin SE is high or bit 7 of mixer register 48h is high.

0 = no effect.

## ES1869 DATA SHEET

REGISTERS

| Serial | Mode | Analog | Control |  |
|--------|------|--------|---------|--|

(46h, R/W)

|                            |                     | (           | ,,           |      |   |                |                |
|----------------------------|---------------------|-------------|--------------|------|---|----------------|----------------|
| Analog control<br>override | Music<br>mixer test | Left<br>ADC | Right<br>ADC | Mono | х | FDXO<br>enable | FDXI<br>enable |
| 7                          | 6                   | 5           | 4            | 3    | 2 | 1              | 0              |

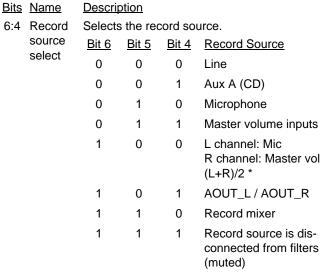
#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>                   | Description                                                                                                                                                                                                                       |
|-------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7           | Analog<br>control<br>override | 5                                                                                                                                                                                                                                 |
| 6           | Music<br>mixer<br>test        | Test feature.<br>1 = Music DAC mixer inputs are replaced with<br>AUXB_L and AUXB_R inputs.                                                                                                                                        |
| 5           | Left<br>ADC                   | $1 = \underline{\text{Left}} \text{ channel combined ADC and DAC is in} \\ \underline{\text{ADC mode}}. \\ 0 = \underline{\text{Left}} \text{ channel combined ADC and DAC is in} \\ \underline{\text{DAC mode}}. \\ \end{array}$ |
| 4           | Right<br>ADC                  | $1 = \frac{\text{Right}}{\text{ADC mode}}$ channel combined ADC and DAC is in<br>$0 = \frac{\text{Right}}{\text{Right}}$ channel combined ADC and DAC is in<br><u>DAC mode</u> .                                                  |

- 3 Mono 1 = Mono record, mono playback, or mono fullduplex modes.
  - 0 = Stereo playback or stereo record.
- 2 No function.
- 1 FDXO Provided for backward compatibility with ES1868.
- enable If Serial mode is enabled, bit 7 and bit 1 of this register (46h) are high, and bit 6 of register 48h is low (serial reset inactive), then the MONO\_OUT pin is selected to be a buffered output of the right channel CIN\_R pin (assumed to be used as a mono DAC output in Serial mode). This condition overrides the settings of mixer register 7Dh, bits 2:1, which normally select the MONO\_OUT state.
- 0 FDXI If Serial mode is enabled and bit 5 (left channel enable used for ADC) and bit 0 are high, then the left channel filter input is the MONO\_IN pin rather than the normally selected record source.

| Serial Mo | de Control |
|-----------|------------|
|-----------|------------|

### (48h, R/W)


| SE | Two's<br>comp | Serial<br>reset | Enable<br>ES689/ES69x<br>intfc | Active-low<br>sync | DSP test<br>mode | Enable 1st<br>DMA in<br>SMODE | 0 |
|----|---------------|-----------------|--------------------------------|--------------------|------------------|-------------------------------|---|
| 7  | 6             | 5               | 4                              | 3                  | 2                | 1                             | 0 |

#### **Bit Definitions:**

#### Bits Name Description

- 7 SW SE 1 = Enable DSP serial port. This signal is synchronized with DCLK input rising edge. If DCLK is not running, changing SE has no effect.
- 6 Two's 1 = Data format is signed, two's complement format. comp 0 = Data format is unsigned (offset binary) format.
- 5 Serial 1 = DSP serial interface reset. Resets left/right reset flags for stereo modes.

0 = Release from reset.



Record source is unchanged in Serial mode.

3:0 Record For microphone source, specifies record gain level from 0 to +22.5 dB in steps of 1.5 dB. For other sources, specifies record level from -6 dB to +16.5 dB in steps of 1.5 dB.

| Serial Mode Outpu      |          | (44        | h, F     | R/W) |       |       |    |
|------------------------|----------|------------|----------|------|-------|-------|----|
| Master volume override | Serial r | node outpu | t select | Ma   | aster | volur | ne |
| 7                      | 6        | 5          | 4        | 3    | 2     | 1     | 0  |

#### **Bit Definitions:**

| Bits | Name | Description |
|------|------|-------------|
| DIG  | Name | Description |

| 7   | Master<br>volume<br>override | from th                                                                        | 1 = Master Volume during Serial mode is taken<br>from this register rather than from the Master<br>Volume registers. |              |                                                                           |  |  |
|-----|------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|--|--|
| 6:4 | Serial<br>mode               | Determines what signal is input to the master volume stage during Serial mode. |                                                                                                                      |              |                                                                           |  |  |
|     | output                       | <u>Bit 6</u>                                                                   | <u>Bit 5</u>                                                                                                         | <u>Bit 4</u> | Master Volume Input                                                       |  |  |
|     | select                       | 0                                                                              | 0                                                                                                                    | 0            | Mute                                                                      |  |  |
|     |                              | 0                                                                              | 0                                                                                                                    | 1            | No change from normal op                                                  |  |  |
|     |                              | 0                                                                              | 1                                                                                                                    | 0            | First audio channel DAC<br>only – playback mixer<br>bypassed *            |  |  |
|     |                              | 0                                                                              | 1                                                                                                                    | 1            | No change from normal op                                                  |  |  |
|     |                              | 1                                                                              | 0                                                                                                                    | 0            | Playback mixer with 1st<br>audio channel DAC set to 0<br>dB attenuation * |  |  |
|     |                              | 1                                                                              | 0                                                                                                                    | 1            | Playback mixer with 1st audio channel DAC muted *                         |  |  |
|     |                              | 1                                                                              | 1                                                                                                                    | 0            |                                                                           |  |  |
|     |                              | 1                                                                              | 1                                                                                                                    | 1            |                                                                           |  |  |
|     |                              | * Over<br>feature                                                              |                                                                                                                      | ecord r      | monitor and record mute                                                   |  |  |
| 3:0 | Master<br>volume             | ···· 9 · · · · · · · · · · · · · · · ·                                         |                                                                                                                      |              |                                                                           |  |  |

#### **ES1869 DATA SHEET**

REGISTERS

|     | l |
|-----|---|
| (C, | ) |
| 771 | , |

| <u>Bits</u> | <u>Name</u>                        | Description                                                                                                                                                                                                                       |
|-------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4           | Enable<br>ES689/<br>ES69x<br>intfc | 1 = Enable ES689/ES69x to use music DAC if<br>MCLK is detected high at least once every 20<br>$\mu$ sec. Mixer volume for this DAC is controlled by<br>the FM mixer volume register.<br>0 = Disable ES689/ES69x serial interface. |
| 3           | Active-<br>low<br>sync             | <ul><li>1 = Frame sync pulses (FSR,FSX) are active-low.</li><li>0 = Frame sync pulses are active-high.</li></ul>                                                                                                                  |
| 2           | DSP<br>test<br>mode                | Test mode. DCLK, FSX, and FSR become out-<br>puts. DCLK is 1.5876 MHz. FSX and FSR are<br>active-high frame syncs at a rate determined by                                                                                         |

- mixer register 4Ah.
   1 Enable 1 = Game and Telephony mode enabled. In Serial mode, connect first channel DMA (game compati-DMA in ble DMA) to second channel DAC. The second SMODE channel DAC gets its filter clock and volume control from the first channel.
   0 = Game and Telephony mode disabled. In Serial mode, the first channel DMA does not get played. The second channel DMA is connected to the second channel DAC as usual.
- 0 0 Reserved. Always write 0.

#### FSX/FSR Rate Control (Test)

| 0 | Two's complement divisor |   |   |   |   |   |   |
|---|--------------------------|---|---|---|---|---|---|
| 7 | 6                        | 5 | 4 | 3 | 2 | 1 | 0 |

#### Bit Definitions:

Bits Name Description

- 7 0 Reserved. Always write 0.
- 6:0 Two's Used in a test mode enabled by bit 2 of mixer register 48h. In this mode DCLK is a clock output of 1.5876 MHz. Bits 6:0 determine the rate of the active-high frame sync outputs FSX and FSR. Example: if bits 6:0 were programmed to be 5Ch (-36 decimal), then the frame rate is 44.1 kHz.

| Serial Mode     | Filter | Divid |   |         | (4Ch    | , R/W)     |                      |
|-----------------|--------|-------|---|---------|---------|------------|----------------------|
| Filter override | 0      | 0     | 0 | Two's c | ompleme | ent filter | <sup>r</sup> divider |
| 7               | 6      | 5     | 4 | 3       | 2       | 1          | 0                    |

This register controls the switched-capacitor filter during Serial mode.

#### **Bit Definitions:**

Bits Name Description

Filter 1 = During Serial mode, the first channel DAC override and ADC switched-capacitor filters are controlled by a clock derived from DCLK.
 0 = This register has no effect.

6:4 0 Reserved. Always write 0.

#### Bits Name Description

3:0 Two's Bits 3:0 are a two's complement value that comp divides down the DCLK input. The ratio of the filfilter ter -3 dB frequency to the filter clock is approxidivider mately 1:41. Examples: 02h (-14) External Serial Clock 2.048 MHz/14/41

= 3568 Hz for 8000 Hz Sample Rate. 0Eh (-2) Internal Serial Clock 1.591 MHz/2/41 = 19.4 kHz for 44,100 Sample Rate. Note that the sample rate divider is an integer multiple of the filter divide for 44,100, which gives maximum performance of DACs and ADCs.

#### Serial Mode Format/Source/Target (4Eh, R/W)

|            |            |            |                       |            |            | •          |                       |
|------------|------------|------------|-----------------------|------------|------------|------------|-----------------------|
| TX<br>SRC1 | TX<br>SRC0 | TX<br>16/8 | TX<br>stereo/<br>mono | RX<br>SRC1 | RX<br>SRC0 | RX<br>16/8 | RX<br>stereo/<br>mono |
| 7          | 6          | 5          | 4                     | 3          | 2          | 1          | 0                     |

#### Bit Definitions:

(4Ah, R/W)

| Bits Name | Description  |                           |                                                                      |  |  |  |
|-----------|--------------|---------------------------|----------------------------------------------------------------------|--|--|--|
| 7:6 TX    | Trans        | Transmit Register Source. |                                                                      |  |  |  |
| SRC1/     | <u>Bit 7</u> | <u>Bit 6</u>              | <u>Source</u>                                                        |  |  |  |
| SRC0      | 0            | 0                         | None: tx register held at zero                                       |  |  |  |
|           | 0            | 1                         | 1st channel DMA FIFO (1st chan-<br>nel in mono/stereo playback dir). |  |  |  |
|           | 1            | 0                         | 1st channel ADC (mono: L ch).                                        |  |  |  |
|           | 1            | 1                         |                                                                      |  |  |  |

5 TX 16/8 1 = Transmit length is 16 bits. 0 = Transmit length is 8 bits.

- 4 TX 1 = Transmit mode is stereo. Left and right chanstereo/ nels alternate, with left channel data preceding mono right channel data. 0 = Transmit mode is mono.
  - 2 RX Receive Register Target.
- 3:2 RX Receive Register Target SRC1/ Bit 3 Bit 2 Target

| SRC0 | <u>DIL 5</u> |   | Taiger                         |
|------|--------------|---|--------------------------------|
|      | 0            | 0 | None: rx register held at zero |

- 0 1 1st channel DMA FIFO (1st channel in mono/stereo record dir).
- 1 0 1st channel DAC (mono: R ch).
  - 1 1 ----
- 1 RX 16/8 1 = Receive length is 16 bits.
  - 0 = Receive length is 8 bits.
- 0 RX 1 = Receive mode is stereo. Left and right chanstereo/ nels alternate, with left channel data preceding right channel data.

0 = Receive mode is mono.



| 3-D E | nable |   |   |            |       | (50h | , R/W) |
|-------|-------|---|---|------------|-------|------|--------|
| 0     | 0     | 0 | 0 | Enable 3-D | Reset | 0    | 0      |
| 7     | 6     | 5 | 4 | З          | 2     | 1    | 0      |

3-D effect uses Spatializer<sup>®</sup> VBX<sup>™</sup> technology, provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc.

#### **Bit Definitions:**

| Bits Name       | Description                                                              |
|-----------------|--------------------------------------------------------------------------|
| 7:4 0           | Reserved. Always write 0.                                                |
| 3 Enable<br>3-D | 1 = Enable 3-D effect.<br>0 = Disable 3-D effect (effect unit bypassed). |
| 2 Reset         | 1 = Release from reset.<br>0 = Reset 3-D effect.                         |
| 0 0             | Reserved. Always write 0.                                                |
| 0 0             | Reserved. Always write 0.                                                |

| 3-D Le | vel |   |   |     |       | (52) | h, <b>R/W)</b> |
|--------|-----|---|---|-----|-------|------|----------------|
| 0      | 0   |   |   | 3-D | level |      |                |
| 7      | 6   | 5 | 4 | 3   | 2     | 1    | 0              |

3-D effect uses Spatializer® VBX<sup>™</sup> technology, provided by Desper Products, Inc., a subsidiary of Spatializer Audio Laboratories, Inc.

Reset to zero by hardware reset.

#### **Bit Definitions:**

| Bits Name     | Description                                 |
|---------------|---------------------------------------------|
| 7:6 0         | Reserved. Always write 0.                   |
| 5:0 3-D level | 0 is minimum effect; 3Fh is maximum effect. |

| Left M | (60                                     | h, <b>R/W)</b> |                    |     |           |     |                |  |  |
|--------|-----------------------------------------|----------------|--------------------|-----|-----------|-----|----------------|--|--|
| 0      | 1:Mute                                  |                | Left master volume |     |           |     |                |  |  |
| 7      | 6                                       | 5              | 4                  | 3   | 2         | 1   | 0              |  |  |
|        | Right Master Volume and Mute (62h, R/W) |                |                    |     |           |     |                |  |  |
| Right  | Master V                                | Volum          | e and M            | ute |           | (62 | h, <b>R/W)</b> |  |  |
| Right  | Master<br>1:Mute                        | Volum          |                    |     | er volume | (62 | h, <b>R/W)</b> |  |  |

Registers 60h and 62h are the actual volume values presented to the analog hardware. These registers can be modified under five circumstances:

- 1. By hardware reset each register is loaded with 36h.
- 2. Direct write to mixer address 60h or 62h.
- 3. If bit 0 of mixer register 64h is low, then writing to mixer registers 22h or 32h updates 60h and 62h.
- 4. If bit 0 of mixer register 64h is low, then a mixer reset (writing to mixer register 0h) loads these registers with 36h.

5. If hardware volume controls are enabled and bit 7 of mixer register 64h is low, then the hardware volume controls can directly modify the contents of these registers.

Reading mixer registers 22h or 32h actually reads a value calculated from the current contents of 60h and 62h.

| Left Hardware Volume Control Counter | (61h, R/W) |
|--------------------------------------|------------|
|--------------------------------------|------------|

| 0 | 1:Mute | Left volume counter |   |   |   |   |   |
|---|--------|---------------------|---|---|---|---|---|
| 7 | 6      | 5                   | 4 | 3 | 2 | 1 | 0 |

See the explanation following the Right Hardware Volume Control Counter, mixer register 63h.

| Right Hardware Volume Control Counter | (63h, R/W) |
|---------------------------------------|------------|
|---------------------------------------|------------|

| 0 | 1:Mute | Right volume counter |   |   |   |   |   |
|---|--------|----------------------|---|---|---|---|---|
| 7 | 6      | 5                    | 4 | 3 | 2 | 1 | 0 |

These registers only exist if bit 7 of mixer register 64h is high. If bit 7 is low, these registers are combined with registers 60h and 62h and cannot be independently written or read.

If bit 7 of mixer register 64h is high, these registers have no connection with registers 60h or 62h. They are the hardware volume counters and mute. It is the responsibility of the host software to read these registers and update the master volume registers 60h and 62h.

#### Master Volume Control

(64h, R/W)

| Split<br>mode | MPU-401<br>int mask | Count<br>by 3 | Read-only HMV<br>int request | Мс | de | HMV int<br>mask | Disable SB Pro master vol emulation |
|---------------|---------------------|---------------|------------------------------|----|----|-----------------|-------------------------------------|
| 7             | 6                   | 5             | 4                            | 3  | 2  | 1               | 0                                   |

## Bit Definitions:

| Bits | Name      | Description |
|------|-----------|-------------|
|      | 1.1041110 |             |

| 7 | Split<br>mode                       | <ul><li>1 = Split counter registers from volume registers<br/>and access them independently.</li><li>0 = Slave counter and volume registers together.</li></ul>                                              |
|---|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | MPU-<br>401 int<br>mask             | This bit is AND'ed with the MPU-401 interrupt request. If it is low, the MPU-401 interrupt request stays low. This bit is cleared by hardware reset.                                                         |
| 5 | Count<br>by 3                       | <ul> <li>1 = Count up and down by 3 for each push of Up or Down buttons.</li> <li>0 = Count up and down by 1 for each push of Up or Down buttons.</li> <li>This bit is cleared by hardware reset.</li> </ul> |
| 4 | Read-<br>only<br>HMV int<br>request | Read-only interrupt request from hardware volume event.                                                                                                                                                      |



| Bits Name | <b>Description</b> |
|-----------|--------------------|
|-----------|--------------------|

3:2 Mode Selects operating mode.

> Bit 3 Bit 2 Operating mode

- 0 0 Normal 3-wire mode (HW reset default
- 0 1 2-wire mode: Up/Down inputs simulatneously low equal Mute input low.
- 1 0 Reduced debounce (10 µsec vs. 40 msec), 2-wire mode, autoincrement/decrement disabled
- 1 HW volume control disabled 1
- 1 HMV int This bit is AND'ed with the hardware volume mask interrupt request before being OR'd with the first channel audio interrupt request. If this bit is low, the hardware volume interrupt request does not get OR'd with the first channel audio interrupt request. This bit is cleared by hardware reset.
- 0 Disable When low, a write to Sound Blaster Pro master SB Pro volume registers 22h or 32h is translated into a write to hardware master volume registers 60h master and 62h. Also, if low, a mixer reset (writing to vol mixer register 0h) causes registers 60h and 62h emulation to be reset to default value 36h. When high, the Sound Blaster Pro master volume registers are, in effect, read-only. This bit is cleared by hardware reset.

| <b>Opamp Calibration Control</b> |   |   |   |   |   |   | (65h, R/W) |                   |
|----------------------------------|---|---|---|---|---|---|------------|-------------------|
|                                  |   |   |   |   |   |   |            | Opamp calibration |
|                                  | 7 | 6 | 5 | 4 | 3 | 2 | 1          | 0                 |

In the analog circuitry of the ES1869, operational amplifiers that require calibration go through a calibration procedure that takes about 200 milliseconds to perform. During this period the analog outputs of the chip (AOUT\_L, AOUT\_R, and MONO\_OUT) are muted.

The calibration procedure occurs automatically after hardware reset and can be started at any time thereafter by writing 1 to mixer register 65h.

### **Bit Definitions:**

#### Bits Name Description

0 Opamp Read: 1 = Opamp calibration is in progress. calibration The calibration operation happens after hardware reset if a 1 is written to this bit. Calibration takes about 200 msec, during which the analog outputs of the chip (AOUT\_L/R, MONO\_OUT) are muted.

> Write: A 1 written to this register starts a calibration operation. A zero written to this register stops the calibration operation immediately (not recommended).

#### Clear Hardware Volume Interrupt Request (66h, R/W)

| Clear Hardware Master Control |   |   |   |   |   |   |   |
|-------------------------------|---|---|---|---|---|---|---|
| 7                             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Any write to this register resets the hardware volume interrupt request.

| Mic R | ecord V  | olume    |   |   |          | (68h     | n, R/W) |
|-------|----------|----------|---|---|----------|----------|---------|
|       | Left Mid | c record |   |   | Right Mi | c record |         |
| 7     | 6        | 5        | 4 | 3 | 2        | 1        | 0       |

This register controls the record volume for the mic input. Set low by hardware reset but not by mixer reset.

| udio | o 2 Reco   | rd Volu  | me |   |            | (69h      | n, R/W) |
|------|------------|----------|----|---|------------|-----------|---------|
|      | Left Audic | 2 record |    | F | Right Audi | o 2 recor | d       |
| 7    | 6          | 5        | 4  | 3 | 2          | 1         | 0       |

This register controls the record volume for the second audio channel input. Set low by hardware reset but not by mixer reset.

#### AuxA (CD) Record Volume

Α

(6Ah, R/W) Right AuxA (CD) record Left AuxA (CD) record 7 6 5 4 3 2 1 0

This register controls the record volume for the CD input. Set low by hardware reset but not by mixer reset.

| Music | DAC R       | ecord \  | Volume | ;   |           | (6Bł    | n, R/W) |
|-------|-------------|----------|--------|-----|-----------|---------|---------|
| L     | eft music l | DAC reco | ord    | Rig | ght music | DAC rec | ord     |
| 7     | 6           | 5        | 4      | 3   | 2         | 1       | 0       |

This register controls the record volume for the music DAC input (FM or wavetable). Set low by hardware reset but not by mixer reset.

| AuxB | Record   | Volum    | е |   |           | (6Cł     | n, R/W) |
|------|----------|----------|---|---|-----------|----------|---------|
|      | Left Aux | B record |   |   | Right Aux | B record |         |
| 7    | 6        | 5        | 4 | 3 | 2         | 1        | 0       |

This register controls the record volume for the auxiliary line input. Set low by hardware reset but not by mixer reset.

| Mono | _In Play   | / Mix     |     |    |          | (6DI       | h, <b>R/W)</b> |
|------|------------|-----------|-----|----|----------|------------|----------------|
| L    | .eft Mono_ | In play m | nix | Ri | ght Mono | _In play r | mix            |
| 7    | 6          | 5         | 4   | 3  | 2        | 1          | 0              |

This register controls the playback volume for the mono input.

| Line Record Volume | (6Eh, R/W) |
|--------------------|------------|
|                    |            |

|   | Left | Line recor | ď |   | Right | Line recor | ď |
|---|------|------------|---|---|-------|------------|---|
| 7 | 6    | 5          | 4 | 3 | 2     | 1          | 0 |

This register controls the record volume for the line input. Set low by hardware reset but not by mixer reset.

| Mone | o_In Rec  | ord Vo    | lume |   |           | (6FI     | h, <b>R/W)</b> |
|------|-----------|-----------|------|---|-----------|----------|----------------|
|      | Left Mono | _In recor | d    | R | ight Mond | _In reco | ord            |
| 7    | 6         | 5         | 4    | 3 | 2         | 1        | 0              |

This register controls the record volume for the mono input. Set low by hardware reset but not by mixer reset.

| Audio 2 Sample Rate |   |                               |   |   |   |   | , R/W) |
|---------------------|---|-------------------------------|---|---|---|---|--------|
| Master clock        |   | Two's complement rate divider |   |   |   |   |        |
| 7                   | 6 | 5                             | 4 | 3 | 2 | 1 | 0      |

Program this register for the sample rate for Audio 2 DAC operations in extended mode.

The sample rate is determined by the two's complement divider in bits 6:0.

Sample\_Rate = Clock\_Source / (128 - Sample\_Rate\_Divider) This register is reset to zero by hardware reset.

#### **Bit Definitions:**

| Bits Name | <b>Description</b> |
|-----------|--------------------|
|-----------|--------------------|

| 7                 | Master<br>clock | Selects the master clock for the sample rate gerator:                    |                                                          |  |  |  |  |  |
|-------------------|-----------------|--------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|
|                   | CIUCK           | 1 = 768 kHz (used to generate 48 kHz, 32 kHz, 16 kHz, 8 kHz, and so on). |                                                          |  |  |  |  |  |
|                   |                 | 0 = 793.8 kHz (used to generate 44.1 kHz, 22.05 kHz, and so on).         |                                                          |  |  |  |  |  |
| 6:0 Two's<br>comp |                 |                                                                          | ement divisor of master clock to pro-<br>rate. Examples: |  |  |  |  |  |
| rate              | Rate            | Register 70h                                                             |                                                          |  |  |  |  |  |
|                   | divider         | 8000                                                                     | A0h                                                      |  |  |  |  |  |

| divider | 8000  | A0h |
|---------|-------|-----|
|         | 48000 | F0h |
|         | 44100 | 6Eh |

#### Audio 2 Mode

| 0 | 0 | New reg<br>A1h | 4x<br>mode | SCF2<br>bypass | SCF1<br>bypass | Async<br>mode | FM mix |
|---|---|----------------|------------|----------------|----------------|---------------|--------|
| 7 | 6 | 5              | 4          | 3              | 2              | 1             | 0      |

This register is reset to zero by hardware reset.

#### **Bit Definitions:**

| Bits Name | Description |
|-----------|-------------|
|-----------|-------------|

7:6 0 Reserved. Always write 0.

#### Bits Name Description

- New 1 = Register A1h behaves in the same manner as reg A1h mixer register 70h, which gives more accurate sample rates that are divisors of 48 kHz.
   0 = Enables register A1h to behave exactly as in previous ESS AudioDrive® chips.
- 4 4x 1 = 2nd channel DAC is in 4x oversampling mode. mode 0 = 2nd channel DAC is not oversampling.
- 3 SCF2 1 = 2nd channel DAC switched capacitor filter is bypass bypassed.

0 = 2nd channel DAC SCF is not bypassed. **NOTE:** the SCF is always bypassed in 4x oversampling mode.

2 SCF1 1 = 1st channel CODEC switched capacitor filter bypass is bypassed.

0 = 1st channel CODEC SCF is not bypassed.

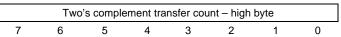
- 1 Async 1 = 2nd channel DAC is asynchronous to the mode sample rate of the 1st channel. 0 = 2nd channel DAC is slaved to the sample rate and filter rate of the 1st channel.
- 0 FM mix 1 = 2nd channel DMA is slaved to the FM synthesizer sample rate and the DMA data is digitally mixed to the FM synthesizer output.

## Audio 2 Filter Clock Rate

## (72h, R/W)

| Two's complement filter rate divider |   |   |   |   |   |   |   |  |  |
|--------------------------------------|---|---|---|---|---|---|---|--|--|
| 7                                    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |

In Asynchronous mode, this register determines the filter clock rate of the second channel switched capacitor filter. If used, this register is programmed in the same manner as controller register A2h.


This register is reset to zero by hardware reset.

## Audio 2 Transfer Count Reload (74h, R/W)

|   |     |            |           |            |             | •    | • |  |
|---|-----|------------|-----------|------------|-------------|------|---|--|
|   | Two | o's comple | ement tra | Insfer cou | unt – Iow I | oyte |   |  |
| 7 | 6   | 5          | 4         | 3          | 2           | 1    | 0 |  |

Audio 2 Transfer Count Reload

(76h, R/W)



### Audio 2 Control 1

(71h, R/W)

(78h, R/W)

|   | /demand<br>nsfer | 0 | Auto-initialize | 0 | 0 | Enable 2nd<br>chan DMA | Enable<br>FIFO to 2nd<br>chan DAC |
|---|------------------|---|-----------------|---|---|------------------------|-----------------------------------|
| 7 | 6                | 5 | 4               | 3 | 2 | 1                      | 0                                 |

#### ES1869 DATA SHEET

REGISTERS

|  | <u>Bits</u> | <u>Name</u> | <b>Description</b> |
|--|-------------|-------------|--------------------|
|--|-------------|-------------|--------------------|

7:6 Single/ Single/deman transfer.

0

1

1

- demand <u>Bit 7</u> <u>Bit 6</u> <u>Function</u> transfer
  - 0 0 Single: 1 DACK per DRQ
    - 1 Demand: 2 DACKs per DRQ
    - 0 Demand: 4 DACKs per DRQ
    - 1 Demand: 8 DACKs per DRQ
- 5 0 Reserved. Always write 0.
- 4 Auto- 1 = Auto-initialize mode. After the transfer counter initialize rolls over to 0, it is automatically reloaded and DMA continues. The second channel interrupt

flag will be set high. 0 = Normal mode. After the transfer counter rolls over to 0, it is reloaded but DMA stops. Bit 1 of this register is cleared. The 2nd channel interrupt flag will be set high.

- 3:2 0 Reserved. Always write 0.
- 1 Enable 1 = 2nd channel DMA enabled for data to be written into the 2nd channel FIFO (32 words deep).
   chan 0 = Second channel DMA not enabled.
   DMA This bit is cleared when the transfer counter rolls over to zero, if not in Auto-initialize mode.
- 0 Enable 1 = Data transfer from the FIFO to the 2nd chan-FIFO to nel DAC is enabled (or, in special cases, from the 2nd FIFO to the DSP serial port or to be digitally chan mixed with the FM synthesizer output). DAC 0 = Data transfer not enabled.

### Audio 2 Control 2

| 2nd chan IRQ | IRQ mask | 0 | 0 | 0 | Signed | stereo/<br>mono | 16-bit/<br>8-bit |
|--------------|----------|---|---|---|--------|-----------------|------------------|
| 7            | 6        | 5 | 4 | 3 | 2      | 1               | 0                |

This register is reset to zero by hardware or software reset.

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>             | Description                                                                                                                                                                                        |
|-------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7           | 2nd<br>chan-<br>nel IRQ | This latch is set high when the DMA counter rolls<br>over to zero, or when a 1 is written to this bit. The<br>latch is cleared by writing a zero to this bit, or by<br>hardware or software reset. |
| 6           | IRQ<br>mask             | This bit is AND'ed with bit 7 to produce the sec-<br>ond DMA channel interrupt request.                                                                                                            |

- 5:3 0 Reserved. Always write 0.
- 2 Signed 1 = Data is in signed, two's complement format. 0 = Unsigned data.
- 1 Stereo/ 1 = Stereo data. This format is reserved for Intermono leave mode when using the DSP serial interface. 0 = Mono data.
- 0 16-bit/ 1 = 16-bit samples.
  - 8-bit 0 = 8-bit samples.

#### Audio 2 DAC Mixer Volume

(7Ch, R/W)

|   | Left chanr | nel volum | е | Right channel volume |   |   |   |  |
|---|------------|-----------|---|----------------------|---|---|---|--|
| 7 | 6          | 5         | 4 | 3                    | 2 | 1 | 0 |  |

This register is reset to zero by hardware reset.

## Mic Preamp, MONO\_IN and MONO\_OUT (7Dh, R/W)

| 0 | 0 | 0 | 0 | Enable<br>+26 dB mic<br>amp | MONC<br>source | D_OUT<br>e select | Enable<br>MONO_IN mix<br>with AOUT_L/R |
|---|---|---|---|-----------------------------|----------------|-------------------|----------------------------------------|
| 7 | 6 | 5 | 4 | 3                           | 2              | 1                 | 0                                      |

This register is reset to 08h by hardware reset.

#### Bit Definitions:

| <u>Bits</u> | <u>Name</u>              | Description               |                                                                      |                                                                                                                          |  |  |  |  |  |  |
|-------------|--------------------------|---------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7:4         | 0                        | Reserved. Always write 0. |                                                                      |                                                                                                                          |  |  |  |  |  |  |
| 3           | Enable +26<br>dB mic amp |                           | 1 = Enable +26 dB microphone preamp gain.<br>0 = Mic preamp is 0 dB. |                                                                                                                          |  |  |  |  |  |  |
| 2:1         |                          | -                         | -                                                                    |                                                                                                                          |  |  |  |  |  |  |
|             | source select            | <u>Bit 2</u>              | <u>Bit 1</u>                                                         | Mono_Out Source                                                                                                          |  |  |  |  |  |  |
|             |                          | 0                         | 0                                                                    | Mute (CMR)                                                                                                               |  |  |  |  |  |  |
|             |                          | 0                         | 1                                                                    | CIN_R pin (1st channel DAC,<br>R channel playback, after fil-<br>ter stage)                                              |  |  |  |  |  |  |
|             |                          | 1                         | 0                                                                    | 2nd channel DAC, R channel output                                                                                        |  |  |  |  |  |  |
|             |                          | 1                         | 1                                                                    | Mono mix of L and R record<br>level stage outputs. Con-<br>trolled by record source select<br>and record level registers |  |  |  |  |  |  |
| 0           | Enable<br>MONO IN        |                           | _                                                                    | N is mixed with AOUT_L and<br>ar playback mixer_3-D effect                                                               |  |  |  |  |  |  |

MONO\_IN AOUT\_R after playback mixer, 3-D effect, mix with and master volume stages. Mix is unity gain. AOUT\_L/R

#### (7Fh, R/W)

|   |          |   | •••• |                         |                                   |                                    |             | (,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            |
|---|----------|---|------|-------------------------|-----------------------------------|------------------------------------|-------------|-------------------------------------------------|
| ſ | Reserved |   | /ed  | Music digital<br>record | I <sup>2</sup> S data<br>activity | I <sup>2</sup> S clock<br>activity | MODE<br>pin | Enable I <sup>2</sup> S connect<br>to music DAC |
|   | 7        | 6 | 5    | 4                       | 3                                 | 2                                  | 1           | 0                                               |

#### **Bit Definitions:**

I<sup>2</sup>S Interface

| Bits Name | Descripti | on |
|-----------|-----------|----|
|           |           |    |

- 7:5 Reserved.
- 4 Music 1 = Enable direct digital recording of Music DAC digital record data (including FM, ES689/ES69x, or I<sup>2</sup>S). In this mode, the first DMA channel must be enabled for stereo recording. The sample rate is determined by the music DAC sample rate rather than by controller register A1h.
- 3 I<sup>2</sup>S data This bit is set high if IISDATA has been high at activity least once since it was last cleared by software.



#### Bits Name Description

| 2 | I <sup>2</sup> S | This bit is set high if both IISCLK and IISLR have |
|---|------------------|----------------------------------------------------|
|   | clock            | been high at the same time at least once since the |
|   | activity         | last time it was last cleared by software.         |

- 1 MODE (Read-only) state of MODE input pin. This pin pin must be high for the I<sup>2</sup>S serial interface to be enabled.
- 0 Enable 1 = Enable  $I^2S$  serial interface to acquire control of  $I^2S$  con- music DAC.
  - nect to 0 = Allow FM synthesizer or ES689/ES69x serial Music interface to use DAC.

DAC

66



### **Controller Registers**

This is a summary and description of the controller registers. These registers are written to and read from using commands of the format Axh or Bxh. To enable access to these registers send the command C6h.

| Reg | D7                                                                                                                                          | D6                                                                                               | D5                                     | D4              | D3                                | D2                              | D1                             | D0                    | Description                    |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------------------------|---------------------------------|--------------------------------|-----------------------|--------------------------------|--|--|--|
| A1h | Clock source                                                                                                                                | Clock source Sample rate divider                                                                 |                                        |                 |                                   |                                 |                                |                       |                                |  |  |  |
| A2h |                                                                                                                                             |                                                                                                  | S/W reset, setup for 8<br>kHz sampling |                 |                                   |                                 |                                |                       |                                |  |  |  |
| A4h |                                                                                                                                             | DMA transfer counter reload – low byte                                                           |                                        |                 |                                   |                                 |                                |                       |                                |  |  |  |
| A5h |                                                                                                                                             |                                                                                                  | DMA transfer cou                       | nter reload – h | nigh byte                         |                                 |                                |                       |                                |  |  |  |
| A8h | 0 0 0 1 Enable record 0 monitor                                                                                                             |                                                                                                  |                                        |                 |                                   | 0                               |                                | /stereo<br>lect       | Analog control                 |  |  |  |
| B1h | Game<br>compatible<br>IRQ                                                                                                                   | e Enable IRQ Enable IRQ for<br>ovf Ext mode FIFO1 HE status x Audio 1 interrupt<br>DMA cntr edge |                                        |                 |                                   |                                 | Legacy audio interrupt control |                       |                                |  |  |  |
| B2h | Game<br>compatible<br>DRQ         Enable DRQ<br>for Ext mode<br>DMA         Enable DRQ game<br>compatible DMA         x         Audio 1 DRQ |                                                                                                  |                                        |                 |                                   |                                 |                                | Audio DRQ control     |                                |  |  |  |
| B4h |                                                                                                                                             | Right Chann                                                                                      | el Record Level                        |                 | L                                 | eft Channel R                   | ecord Lev                      | el                    | Record Level                   |  |  |  |
| B5h |                                                                                                                                             |                                                                                                  | DMA direct acce                        | ss holding – lo | ow byte                           |                                 |                                |                       |                                |  |  |  |
| B6h |                                                                                                                                             |                                                                                                  | DMA direct acces                       | ss holding – hi | igh byte                          |                                 |                                |                       |                                |  |  |  |
| B7h | Enable FIFO<br>to/from<br>CODEC                                                                                                             | Reserved. Set<br>opposite<br>polarity of bit 3                                                   | Data type select                       | 1               | Stereo/<br>Mono<br>mode<br>select | Mono mode 0 1<br>mode select    |                                | Audio 1 control 1     |                                |  |  |  |
| B8h | 0                                                                                                                                           | 0                                                                                                | 0                                      | 0               | Codec<br>mode                     |                                 |                                | Audio 1 control 2     |                                |  |  |  |
| B9h | 0 0 0                                                                                                                                       |                                                                                                  | 0                                      | 0               | 0                                 | Transf                          | er type                        | Audio 1 transfer type |                                |  |  |  |
| BAh | 0 Disable time delay on analog wake-up                                                                                                      |                                                                                                  |                                        | Sign            | Adjust magnitude                  |                                 |                                |                       | Left channel ADC offset adjust |  |  |  |
| BBh |                                                                                                                                             | Sign                                                                                             | Adjust magnitude                       |                 |                                   | Right channel ADC offset adjust |                                |                       |                                |  |  |  |

#### **Controller Register Descriptions**

## Extended Mode Sample Rate Generator (A1h, R/W)

| Clock source |   |   | Samp | ole rate c | livider |   |   |
|--------------|---|---|------|------------|---------|---|---|
| 7            | 6 | 5 | 4    | 3          | 2       | 1 | 0 |

This register should be programmed for the sample rate for all DAC operations in Extended mode.

The clock source for the sample rate generator is 397.7 kHz if bit 7 is 0 and 795.5 kHz if bit 7 is 1.

The sample rate is determined by the two's complement divider in bits 7:0.

Sample\_Rate = 397.7 kHz / (128-x) if bit 7 = 0. = 795.5 kHz / (256-x) if bit 7 = 1.

where x = value in bits 7:0 of register A1h.

## Bit Definitions:

rate divider

| <u>Bits</u> | <u>Name</u>     | Description                                                                   |
|-------------|-----------------|-------------------------------------------------------------------------------|
| 7           | Clock<br>source | 1 = clock source is 795.5 kHz for sample rates higher than 22 kHz.            |
|             |                 | 0 = clock source is 397.7 kHz for sample rates lower than or equal to 22 kHz. |
| 6:0         | Sample          | Signed sample rate divider.                                                   |



| Filter D | Divider |   |             |            |   | (A2) | h, <b>R/W)</b> |
|----------|---------|---|-------------|------------|---|------|----------------|
|          |         |   | Filter cloo | ck divider |   |      |                |
| 7        | 6       | 5 | 4           | 3          | 2 | 1    | 0              |

This register controls the low-pass frequency of the switch-capacitor filters inside the ES1869. Generally, the filter roll-off should be positioned at 80% - 90% of the Sample Rate/2 frequency. The ratio of the roll-off frequency to the filter clock frequency is 1:82. In other words, first determine the desired roll-off frequency by taking 80% of the Sample Rate divided by 2, then multiply by 82 to find the desired filter clock frequency. Use the formula below to determine the closest divider:

Filter\_Clock\_Frequency = 7.16 MHz / (256-Filter\_Divider\_Register)

| DMA T | DMA Transfer Count Reload            |   |   |   |   |   |   |  |  |
|-------|--------------------------------------|---|---|---|---|---|---|--|--|
|       | DMA transfer count reload – low byte |   |   |   |   |   |   |  |  |
| 7     | 6                                    | 5 | 4 | 3 | 2 | 1 | 0 |  |  |

On reset, this register assumes the value of 00h.

| DMA T | ransfer | Count    | Reloa     | d          |          | (A5 | h, R/W) |
|-------|---------|----------|-----------|------------|----------|-----|---------|
|       | D       | MA trans | fer count | t reload – | high byt | e   |         |
| 7     | 6       | 5        | 4         | 3          | 2        | 1   | 0       |

On reset, this register assumes the value of F8h.

The FIFO control logic of the ES1869 has a 16-bit counter for controlling transfers to and from the FIFO. These registers are the reload value for that counter which is the value that gets copied into the counter after each overflow (plus at the beginning of the initial DMA transfer). The counter is incremented after each successful byte is transferred by DMA. Since the counter counts up towards FFFFh and then overflows, the reload value is in two's complement form.

For Auto-Initialize mode DMA, the counter is used to generate interrupt requests to the system processor. In this mode, the ES1869 allows continuous DMA. In a typical application the counter is programmed to be onehalf of the DMA buffer maintained by the system processor. In this application an interrupt is generated whenever DMA switches from one half of the circular buffer to the other.

For Normal mode DMA, DMA requests are halted at the time that the counter overflows, until a new DMA transfer is commanded by the system processor. Again, an interrupt request is generated to the system processor if bit 6 of register B1h is set high.

| V) Analog C | ontrol |
|-------------|--------|
|-------------|--------|

(A8h. R/W)

| ſ | 0 | 0 | 0 | 1 | Record monitor<br>enable | 0 |   | o/mono<br>lect |
|---|---|---|---|---|--------------------------|---|---|----------------|
|   | 7 | 6 | 5 | 4 | 3                        | 2 | 1 | 0              |

When programming the FIFO for DMA playback modify only bits 1:0. When programming the FIFO for DMA record modify only bits 3, 1, and 0. Read this register first to preserve the remaining bits.

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u> | Descrip      | Description                                               |                                 |  |  |  |  |  |  |
|-------------|-------------|--------------|-----------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| 7:5         | 0           | Reserve      | ed. Alwa                                                  | ays write 0.                    |  |  |  |  |  |  |
| 4           | 1           | Reserve      | ed. Alwa                                                  | ays write 1.                    |  |  |  |  |  |  |
| 3           |             |              | 1 = Enable record monitor.<br>0 = Disable record monitor. |                                 |  |  |  |  |  |  |
| 2           | 0           | Reserve      | ed. Alwa                                                  | ays write 0.                    |  |  |  |  |  |  |
| 1:0         | Stereo/     | Select of    | operatio                                                  | n mode of first DMA converters. |  |  |  |  |  |  |
|             | mono        | <u>Bit 1</u> | <u>Bit 0</u>                                              | Mode                            |  |  |  |  |  |  |
|             | select      | 0            | 0                                                         | Reserved                        |  |  |  |  |  |  |
|             |             | 0            | 1                                                         | Stereo                          |  |  |  |  |  |  |
|             |             | 1            | 0                                                         | Mono                            |  |  |  |  |  |  |
|             |             | 1            | 1                                                         | Reserved                        |  |  |  |  |  |  |

### Legacy Audio Interrupt Control

(B1h R/W)

|                           |                                     | ••••••                                    |   |     |       | -,    | ,    |
|---------------------------|-------------------------------------|-------------------------------------------|---|-----|-------|-------|------|
| Game<br>compatible<br>IRQ | Enable IRQ ovf Ext<br>mode DMA cntr | Enable IRQ for<br>FIFO1 HE status<br>edge | x | Aud | lio 1 | inter | rupt |
| 7                         | 6                                   | 5                                         | 4 | 3   | 2     | 1     | 0    |

#### **Bit Definitions:**

Bits Name Description

- 7 Game com- Reserved for Compatibility mode. Leave zero patible IRQ for Extended mode.
- 6 Enable IRQ Set high to receive interrupts for each overovf Ext flow of the ES1869 DMA counter in Extended mode DMA mode. cntr
- 5 Enable IRQ Set high to receive interrupts for FIFO Half-Empty transitions when doing block I/O to/ for FIFO1 HE status from the FIFO in Extended mode. edge
- 4 No function. The audio device activate bit serves the purpose of enabling the interrupt pin.

| Bits Name Description    |              |              |              |              |                              |  |  |  |  |
|--------------------------|--------------|--------------|--------------|--------------|------------------------------|--|--|--|--|
| 3:0 Audio 1<br>interrupt |              | ,            |              |              | ected interrupt<br>nterrupt. |  |  |  |  |
|                          | <u>Bit 3</u> | <u>Bit 2</u> | <u>Bit 1</u> | <u>Bit 0</u> | Audio 1 Interrupt            |  |  |  |  |
|                          | 0            | 0            | 0            | 0            | 2, 9, all others             |  |  |  |  |
|                          | 0            | 1            | 0            | 1            | 5                            |  |  |  |  |
|                          | 1            | 0            | 1            | 0            | 7                            |  |  |  |  |
|                          | 1            | 1            | 1            | 1            | 10                           |  |  |  |  |

#### **DRQ Control**

#### (B2h, R/W)

|   | Enable DRQ for<br>Extended mode<br>DMA | Enable DRQ<br>game compatible<br>DMA | x | A | udio | 1 DR | Q |
|---|----------------------------------------|--------------------------------------|---|---|------|------|---|
| 7 | 6                                      | 5                                    | 4 | 3 | 2    | 1    | 0 |

#### **Bit Definitions:**

Bits Name Description

- 7 Game Reserved for Compatibility mode. Leave zero compatible for Extended mode. DRQ
- 6 Enable 1 = Enable DRQ outputs and DACKB inputs DRQ for for DMA transfers in Extended mode. Extended 0 = Enable block I/O to/from the FIFO in mode DMA Extended mode.
- 5 Enable Reserved for Compatibility mode. Leave zero DRQ game for Extended mode. compatible

DMA

- No function. The DRQ lines always drive (there is no enable). If neither bit 5 nor bit 6 are set high, the first audio DRQ is always low.
- 3:0 Audio 1 Read-only. The selected DMA channel number for the first audio DMA channel are decoded to set these bits.

| <u>Bit 3</u> | <u>Bit 2</u> | <u>Bit 1</u> | <u>Bit 0</u> | <u>Audio 1 DRQ</u> |
|--------------|--------------|--------------|--------------|--------------------|
| 0            | 1            | 0            | 1            | 0                  |
| 1            | 0            | 1            | 0            | 1                  |
| 1            | 1            | 1            | 1            | 3                  |
| 0            | 0            | 0            | 0            | all others         |

| R | ecord | Level      |          |      |     |           | (B4l     | h, <b>R/W)</b> |
|---|-------|------------|----------|------|-----|-----------|----------|----------------|
|   | Righ  | nt channel | record l | evel | Lef | t channel | record I | evel           |
|   | 7     | 6          | 5        | 4    | 3   | 2         | 1        | 0              |

Register B4h allows for independent left and right record level. Each channel has 16 levels (excluding mute). The amount of gain or attenuation for each level is different for microphone than for all other sources. The record levels are listed in the following table.

| Record Level | Gain for Mic | Gain for Other<br>Sources |
|--------------|--------------|---------------------------|
| 0            | +0 dB        | -6.0 dB                   |
| 1            | +1.5 dB      | -4.5 dB                   |
| 2            | +3.0 dB      | -3.0 dB                   |
| 3            | +4.5 dB      | -1.5 dB                   |
| 4            | +6.0 dB      | 0 dB                      |
| 5            | +7.5 dB      | +1.5 dB                   |
| 6            | +9.0 dB      | +3.0 dB                   |
| 7            | +10.5 dB     | +4.5 dB                   |
| 8            | +12.0 dB     | +6.0 dB                   |
| 9            | +13.5 dB     | +7.5 dB                   |
| 10           | +15.0 dB     | +9.0 dB                   |
| 11           | +16.5 dB     | +10.5 dB                  |
| 12           | +18.0 dB     | +12.0 dB                  |
| 13           | +19.5 dB     | +13.5 dB                  |
| 14           | +21.0 dB     | +15.0 dB                  |
| 15           | +22.5 dB     | +16.5 dB                  |

## DAC Direct Access Holding

(B5h, R/W)

| DAC direct access holding – low byte |   |   |   |   |   |   |   |  |
|--------------------------------------|---|---|---|---|---|---|---|--|
| 7                                    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |

Low byte of DAC direct access holding register. Because the bus between the ISA bus and the FIFO is only 8 bits wide, the ES1869 needs a location for storage of 16-bit data. Registers B5h and B6h serve this function.

| DAC Direct Access Holding (B6h, R/ |   |                   |         |          |      |   |   |  |
|------------------------------------|---|-------------------|---------|----------|------|---|---|--|
|                                    |   | DAC direct access | holding | – high l | byte |   |   |  |
| 7                                  | 6 | 5                 | 4       | 3        | 2    | 1 | 0 |  |

High byte of DAC direct access holding register. Because the bus between the ISA bus and the FIFO is only 8 bits wide, the ES1869 needs a location for storage of 16-bit data. Register B5h and B6h serve this function.

## Audio 1 Control 1

(B7h, R/W)

|                                 |                               |                        | _ |                        |                        | • |                         |
|---------------------------------|-------------------------------|------------------------|---|------------------------|------------------------|---|-------------------------|
| Enable FIFO<br>to/from<br>CODEC | Set<br>oppo-<br>site bit<br>3 | FIFO<br>signed<br>mode | 1 | FIFO<br>stereo<br>mode | FIFO<br>16-bit<br>mode | 0 | Generate<br>load signal |
| 7                               | 6                             | 5                      | 4 | 3                      | 2                      | 1 | 0                       |

#### **Bit Definitions:**

| CODEC the FIFO and the analog circuitry. | Bits Name |         | Description                                                                                                                 |
|------------------------------------------|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------|
| DAC or ADC.                              | t         | to/from | DAC or ADC. This allows transfers to/from<br>the FIFO and the analog circuitry.<br>0 = Disable first DMA FIFO connection to |



| Bits Name |                         | Description                                                                                                                                                                                                                              |  |  |  |  |
|-----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 6         | Set opposite bit 3      | Reserved function. This bit must be set to<br>the opposite polarity of bit 3: high for mono<br>and low for stereo.                                                                                                                       |  |  |  |  |
| 5         | FIFO signed mode        | <ul><li>1 = First DMA FIFO two's complement mode<br/>(signed data).</li><li>0 = First DMA FIFO unsigned (offset 8000).</li></ul>                                                                                                         |  |  |  |  |
| 4         | 1                       | Reserved. Always write 1.                                                                                                                                                                                                                |  |  |  |  |
| 3         | FIFO stereo<br>mode     | <ul><li>1 = First DMA FIFO stereo mode.</li><li>0 = First DMA FIFO mono mode.</li><li>Bit 6 must be set at the opposite polarity of this bit: high for mono, low for stereo.</li></ul>                                                   |  |  |  |  |
| 2         | FIFO 16-bit<br>mode     | 1 = First DMA FIFO 16-bit mode.<br>0 = First DMA FIFO 8-bit mode.                                                                                                                                                                        |  |  |  |  |
| 1         | 0                       | Reserved. Always write 0.                                                                                                                                                                                                                |  |  |  |  |
| 0         | Generate<br>load signal | Write 1. Generates a load signal that copies<br>DAC Direct Access Holding register to DAC<br>on the next sample rate clock edge (sample<br>rate is determined by Extended mode regis-<br>ter A1h). This bit is cleared after the holding |  |  |  |  |

| Audio 1 Control 2 |   |   |   |   |               |             | (B8h, R/W)         |                        |
|-------------------|---|---|---|---|---------------|-------------|--------------------|------------------------|
|                   | 0 | 0 | 0 | 0 | CODEC<br>mode | DMA<br>mode | DMA read<br>enable | DMA transfer<br>enable |
|                   | 7 | 6 | 5 | 4 | 3             | 2           | 1                  | 0                      |

register is copied to the DAC.

#### **Bit Definitions:**

| <u>Bits</u> | <u>Name</u>               | Description                                                                                         |
|-------------|---------------------------|-----------------------------------------------------------------------------------------------------|
| 7:4         | 0                         | Reserved. Always write 0.                                                                           |
| 3           | CODEC<br>mode             | <ul><li>1 = first DMA converter in ADC mode.</li><li>0 = first DMA converter in DAC mode.</li></ul> |
| 2           | DMA mode                  | 1 = auto-initialize mode.<br>0 = normal DMA mode.                                                   |
| 1           | DMA read<br>enable        | 1 = first DMA is read (e.g. for ADC operation).<br>0 = first DMA is write (e.g. for DAC operation). |
| 0           | DMA<br>transfer<br>enable | First DMA active-low reset. When high, first DMA is allowed to proceed.                             |
|             |                           |                                                                                                     |

| Audio | o 1 Tra | ansfer |   | (B9h, R/W) |   |             |                |
|-------|---------|--------|---|------------|---|-------------|----------------|
| 0     | 0       | 0      | 0 | 0          | 0 | DMA transfe | er type select |
| 7     | 6       | 5      | 4 | 3          | 2 | 1           | 0              |

### **Bit Definitions:**

| Bits Name | Description               |
|-----------|---------------------------|
| 7:2 0     | Reserved. Always write 0. |

Bits Name **Description** 

| 1:0 DMA          | Selects the DMA transfer type for the first DMA. |              |               |                                    |  |  |
|------------------|--------------------------------------------------|--------------|---------------|------------------------------------|--|--|
| transfer<br>type | <u>Bit 1</u>                                     | <u>Bit 0</u> | Transfer Type | <u>Bytes/DMA</u><br><u>Request</u> |  |  |
| select           | 0                                                | 1            | Single        | _                                  |  |  |
|                  | 1                                                | 0            | Demand        | 2                                  |  |  |
|                  | 1                                                | 1            | Demand        | 4                                  |  |  |
|                  | 0                                                | 0            | Reserved      | _                                  |  |  |

#### Left Channel ADC Offset Adjust

(BAh, R/W)

| 0 | 0 | Disable time delay on<br>analog wake-up | Sign | Adjust magnitude |   |   |   |
|---|---|-----------------------------------------|------|------------------|---|---|---|
| 7 | 6 | 5                                       | 4    | 3                | 2 | 1 | 0 |

This register is reset to zero by hardware reset and is unaffected by software reset.

#### **Bit Definitions:**

| <u>Bits</u> Name                                | Description                                                                                                                                                                                                                             |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 0                                           | Reserved. Always write 0.                                                                                                                                                                                                               |
| 5 Disable time<br>delay on<br>analog<br>wake-up | Normally, the AOUT_L and AOUT_R pins<br>are muted for 100 msec $\pm$ 20 msecs after<br>hardware reset or after the analog sub-<br>systems wake from power-down. Set high to<br>disable delay.<br>This bit is cleared by hardware reset. |
| 4:0 Sign/Adjust<br>magnitude                    | See the explanation for bits 4:0 following register BBh.                                                                                                                                                                                |

#### Right Channel ADC Offset Adjust (BBh, R/W)

| 0 | 0 | 0 | Sign |   | Adjust m | agnitude |   |
|---|---|---|------|---|----------|----------|---|
| 7 | 6 | 5 | 4    | 3 | 2        | 1        | 0 |

This register is reset to zero by hardware reset and is unaffected by software reset.

## **Bit Definitions:**

| Bits Name | <b>Description</b>  |
|-----------|---------------------|
| 7:5 0     | Reserved. Always wr |

| 0 | Reserved. Always write 0 |
|---|--------------------------|
|---|--------------------------|

4:0 Sign/Adjust See the following explanation for bits 4:0. magnitude

Bits 4 (sign) and 3:0 (adjust magnitude) of the ADC Offset Adjust registers cause a constant value to be added to the ADC converter output, as shown in the following:

| æ 4515) |
|---------|
|         |

| Code | Offset | Code | Offset |
|------|--------|------|--------|
| 00h  | 0      | 10h  | -64    |
| 01h  | +64    | 11h  | -128   |
| 02h  | +128   | 12h  | -192   |
| 03h  | +192   | 13h  | -256   |
| 04h  | +256   | 14h  | -320   |
| 05h  | +320   | 15h  | -384   |
| 06h  | +384   | 16h  | -448   |
| 07h  | +448   | 17h  | -512   |
| 08h  | +512   | 18h  | -576   |
| 09h  | +576   | 19h  | -640   |
| 0Ah  | +640   | 1Ah  | -704   |
| 0Bh  | +704   | 1Bh  | -768   |
| 0Ch  | +768   | 1Ch  | -832   |
| 0Dh  | +832   | 1Dh  | -896   |
| 0Eh  | +896   | 1Eh  | -960   |
| 0Fh  | +960   | 1Fh  | -1024  |

Formula:

bit 4 = 0: offset = 64 \* bits[3:0]

bit 4 = 1: offset = -64 \* (bits[3:0] +1)

To calculate the offset adjust code, first measure the ADC offset for both right and left channels before adjustment by following these steps:

- 1. Program Extended mode registers BAh and BBh bits 4:0 to be zero (no digital offset).
- 2. Select a zero-amplitude (or low amplitude) recording source.
- 3. Set the recording volume to minimum by setting Extended mode register B4h to zero.
- Make a stereo 16-bit two's complement recording at 11 kHz sample rate of 2048 stereo samples (2048 stereo samples = 4096 words = 8192 bytes, which is about 190 milliseconds).
- 5. Use the last 1024 stereo samples to calculate a long term average for both left and right channels.
- 6. With this average DC offset, calculate the best digital offset to bring the sum closest to zero, using the codes and offsets listed in the table above.



## AUDIO MICROCONTROLLER COMMAND SUMMARY

Table 26 Command Summary

| Command | Data Byte(s)<br>Write/Read | Function                                                                                                                                                                                                                                                                                                                                                       |  |
|---------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10h     | 1 write                    | Direct write 8-bit DAC. Data is 8-bit unsigned format.                                                                                                                                                                                                                                                                                                         |  |
| 11h     | 2 writes                   | Direct write 16-bit DAC. Data is 16-bit unsigned format, first low byte then high byte.                                                                                                                                                                                                                                                                        |  |
| 14h     | 2 writes                   | Start Normal mode DMA for 8-bit DAC transfer. Data is transfer count - 1, least byte first. Stereo DAC transfer if stereo flag is set in mixer register 0Eh. Maximum sample rate is 44 kHz mono, 22 kHz stereo.                                                                                                                                                |  |
| 15h     | 2 writes                   | Start Normal mode DMA for 16-bit DAC transfer. Data is transfer count - 1, least byte first. Stereo DAC transfer if stereo flag is set in mixer register 0EH. Maximum sample rate is 22 kHz mono, 11 kHz stereo.                                                                                                                                               |  |
| 1Ch     |                            | Start Auto-Initialize mode DMA for 8-bit DAC transfer. Block size must be previously set by command 48h. Stereo DAC transfer if stereo flag is set in mixer register 0Eh. Maximum sample rate is 44 kHz mono, 22 kHz stereo.                                                                                                                                   |  |
| 1Dh     |                            | Start Auto-Initialize mode DMA for 16-bit DAC transfer. Block size must be previously set by com-<br>mand 48h. Stereo DAC transfer if stereo flag is set in mixer register 0Eh. Maximum sample rate is 22<br>kHz mono, 11 kHz stereo.                                                                                                                          |  |
| 20h     | 1 read                     | Direct mode 8-bit ADC. Data is 8-bit unsigned. Firmware controlled input volume for AGC.                                                                                                                                                                                                                                                                       |  |
| 21h     | 2 reads                    | Direct mode 16-bit ADC, returns least byte first. Data is 16-bit unsigned format. Input volume con-<br>trolled by command DDh.                                                                                                                                                                                                                                 |  |
| 24h     | 2 writes                   | Start Normal mode DMA for 8-bit ADC transfer. Data is transfer count - 1, least byte first. Firmware controlled input volume for AGC. Maximum sample rate is 22 kHz: use command 99h for higher rates up to 44 kHz.                                                                                                                                            |  |
| 25h     | 2 writes                   | Start Normal mode DMA for 16-bit ADC transfer. Data is transfer count - 1, least byte first. Input vol-<br>ume controlled via command DDh. Maximum sample rate is 22 kHz.                                                                                                                                                                                      |  |
| 2Ch     |                            | Start Auto-Initialize mode DMA for 8 bit ADC transfer. Block size must be previously set by command 48h. Firmware controlled input volume for AGC. Maximum sample rate is 22 kHz: use command 98h for higher rates up to 44 kHz.                                                                                                                               |  |
| 2Dh     |                            | Start Auto-Initialize mode DMA for 16-bit ADC transfer. Block size must be previously set by com-<br>mand 48h. Input volume is controlled by command DDh. Maximum sample rate is 22 kHz.                                                                                                                                                                       |  |
| 30h/31h |                            | MIDI input mode. Detects MIDI serial input data and transfers to data register, setting Data-Available flag in register Audio_Base+Eh. Command 31h will also generate an interrupt request for each byte received.<br>Exit MIDI input mode by executing a write to port Audio_Base+Ch. The data written is ignored. A software reset will also exit this mode. |  |
| 34h/35h |                            | MIDI UART mode. Acts like commands 30h/31h, except that any data written to Audio_Base+Ch will be transmitted as MIDI serial output data. The only way to exit this mode is through software reset.                                                                                                                                                            |  |
| 38h     | 1 write                    | MIDI output. Transmit one byte.                                                                                                                                                                                                                                                                                                                                |  |
| 40h     | 1 write                    | Set time constant, X, for timer used for DMA mode DAC/ADC transfers: rate = 1 MHz / (256-X) X must be less than or equal to 233. For stereo DAC, program sample rate for twice the per-channel rate.                                                                                                                                                           |  |
| 41h     | 1 write                    | Alternate set time constant, X: rate = 1.5 MHz / (256-X)<br>This command provides more accurate timing for certain rates such as 22,050. X must be less than<br>equal to 222. For stereo DAC, program sample rate for twice the per-channel rate.                                                                                                              |  |
| 42h     | 1 write                    | Set filter clock independently of timer rate. (note that the filter clock is automatically set by commands $40h/41h$ ) Filter clock rate: rate = $7.16E6 / (256-X)$<br>The relationship between the low-pass filter -3 dB point and the filter clock rate is approximately 1:82.                                                                               |  |
| 48h     | 2 writes                   | Set block size-1 for high speed mode and auto-init mode transfer, least byte first.                                                                                                                                                                                                                                                                            |  |

72

#### AUDIO MICROCONTROLLER COMMAND SUMMARY



| Command          | Data Byte(s)<br>Write/Read | Function                                                                                                                                                                                                                |
|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 64h              | 2 writes                   | Start ESPCM <sup>®</sup> 4.3-bit (low compression) format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                            |
| 65h              | 2 writes                   | Same as command 64h, except with reference byte flag.                                                                                                                                                                   |
| 66h              | 2 writes                   | Start ESPCM <sup>®</sup> 3.4-bit (medium compression) format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                         |
| 67h              | 2 writes                   | Same as command 66h, except with reference byte flag.                                                                                                                                                                   |
| 6Ah              | 2 writes                   | Start ESPCM <sup>®</sup> 2.5-bit (high compression) format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                           |
| 6Bh              | 2 writes                   | Same as command 6Ah, except with reference byte flag.                                                                                                                                                                   |
| 6Eh              | 2 writes                   | Start ESPCM <sup>®</sup> 4.3-bit (low compression) format ADC, compression, and DMA transfer. Data is transfer count - 1, least byte first.                                                                             |
| 6Fh              | 2 writes                   | Same as command 6Eh, except with reference byte flag.                                                                                                                                                                   |
| 74h              | 2 writes                   | Start ADPCM 4-bit format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                                                             |
| 75h              | 2 writes                   | Same as command 74h, except with reference byte flag.                                                                                                                                                                   |
| 76h              | 2 writes                   | Start ADPCM 2.6-bit format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                                                           |
| 77h              | 2 writes                   | Same as command 76h, except with reference byte flag.                                                                                                                                                                   |
| 7Ah              | 2 writes                   | Start ADPCM 2-bit format DMA transfer to DAC. Data is transfer count - 1, least byte first.                                                                                                                             |
| 7Bh              | 2 writes                   | Same as command 7Ah, except with reference byte flag.                                                                                                                                                                   |
| 80h              | 2 writes                   | Generate silence period. Data is number of samples - 1.                                                                                                                                                                 |
| 90h              |                            | Start Auto-Initialize DMA 8-bit transfer to DAC. Transfer count must be previously set by command 48h.                                                                                                                  |
| 91h              |                            | Start DMA 8-bit transfer to DAC. Transfer count must be previously set by command 48h.                                                                                                                                  |
| 98h              |                            | Start High-Speed mode, Auto-Initialize, DMA 8-bit transfer from ADC. Transfer count must be previously set by command 48h. There is no AGC. Input volume is controlled with command DDh. Maximum sample rate is 44 kHz. |
| 99h              |                            | Start High-Speed mode, DMA 8-bit transfer from ADC. Transfer count must be previously set by com-<br>mand 48h. There is no AGC. Input volume is controlled with command DDh. Maximum sample rate is<br>44 kHz.          |
| Axh, Bxh,<br>Cxh |                            | (where $x = 0$ to Fh) ES1869 extension commands. Many of these commands are used to access the ES1869's controller registers. For information on these registers, see the register descriptions.                        |
| C1h              |                            | Resume after suspend.                                                                                                                                                                                                   |
| C6h              |                            | Enable ES1869 Extension commands Axh, Bxh. Must be issued after every reset.                                                                                                                                            |
| -                |                            |                                                                                                                                                                                                                         |

Disable ES1869 Extension commands Axh, Bxh.

Pause DMA. Internal FIFO operations continue until the FIFO is empty (DAC transfer) or full (ADC

transfer). It is not necessary to use this command to stop DMA if the transfer is completed normally

Read GPO0/1 Power Management register

Write GPO/1 Power Management register

and the end-of-DMA interrupt is generated.

Enable Audio 1 DAC input to mixer.

Disable Audio 1 DAC input to mixer.

Continue DMA after command D0h.

Return Audio 1 DAC enable status:

0=disabled FFh=enabled

 Table 26 Command Summary (Continued)

C7h

CEh

CFh

D0h

D1h

D3h

D4h

D8h

1 read

1 write

1 read



### Table 26 Command Summary (Continued)

| Command | Data Byte(s)<br>Write/Read | Function                                                                                                            |
|---------|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| DCh     | 1 read                     | Return current input gain, 0-15, (valid during 16-bit ADC and 8-bit "high speed mode" ADC).                         |
| DDh     | 1 write                    | Write current input gain, 0-15, (valid during 16-bit ADC and 8-bit "high speed mode" ADC).                          |
| E1h     | 2 reads                    | Return version number high (3), followed by version number low (1). This indicates Sound Blaster Pro compatibility. |
| F2h     |                            | Generate an interrupt for test purposes.                                                                            |
| FDh     |                            | Forces power-down. Software or hardware reset. Required for wake-up.                                                |

## POWER MANAGEMENT

### Overview

The ES1869 supports three power states:

- full power-up
- partial power-down
- full power-down

The system processor decides whether to power down partially or fully. Activity flags monitored by the system processor are available to track I/O activity to and from the ES1869. After a predetermined idle period, the system processor can command the ES1869 to power down partially or fully.

If the oscillator clock is provided from an external circuit, automatic wake-up upon I/O activity is available. With the automatic wake-up feature, the act of reading or writing to an ES1869 I/O port causes the chip to immediately power up without losing context from partial or fully powereddown states.

If the oscillator clock is provided by a crystal, automatic wake-up from partial power-down is available because the oscillator continues to run as long as the ES1869 is not fully powered down. Once the chip is fully powered down, however, automatic wake-up is not available with a crystal oscillator due to the start-up requirements of the oscillator itself. System software must then provide for a start-up

period for the oscillator before returning control to the application programs that may access the ES1869. There is no loss of context in either case.

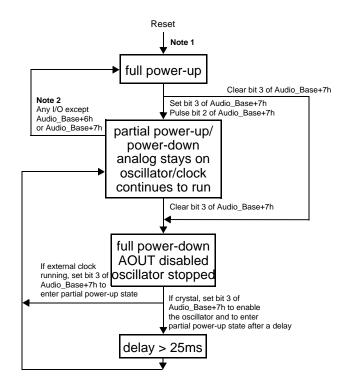



Figure 22 Summary of Power States in the ES1869 **Note 1:** After return to full power-up state from full power-down state, the AOUT\_L and AOUT\_R analog output pins are not enabled for 48 to 64 milliseconds. The chip should remain in the full power-up state for at least 64 milliseconds to be sure the AOUT\_L and AOUT\_R pins are enabled before changing to the partial power-down state. Otherwise the AOUT\_L and AOUT\_R pins may never get enabled. For this reason it is not possible to go directly from full power-down to partial power-down and have AOUT\_L and AOUT\_R enabled.

**Note 2:** A low input on any of the three hardware volume control pins (VOLUP, VOLDN, or MUTE) also acts as a wake-up event.

### ES1869 DATA SHEET

POWER MANAGEMENT

| ) |
|---|
|   |

| 0 | Full power-down. Crystal oscillator<br>disabled. AOUT_L and AOUT_R held at<br>approximately CMR by high value<br>resistors. | All inputs<br>static at<br>VDDD or<br>GND. |
|---|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1 | Partial power-down. Joystick, MPU-401<br>are up. Audio, FM, ES689/ES69x interface,<br>and DSP serial interface are down.    | Digital<br>standby.                        |
| 2 | Full power-up. This is the state after hardware reset.                                                                      | Normal<br>operating<br>conditions.         |

## **Partial Power-Down**

When the ES1869 is in the partial power-down state, the power supply remains connected to the chip during powerdown and the chip's analog section remains active while the digital circuits are mostly inactive.

The total current used by the ES1869 can be reduced by a factor of two or more by putting the ES1869 in a partial power-down state. The crystal oscillator, if used, continues to operate. The analog circuitry remains powered up so that AUXA\_L, AUXA\_R, AUXB\_L, AUXB\_R, LINE\_L, LINE\_R, and MIC audio sources can continue to be heard. FM and DAC audio are automatically muted. No pops should occur when returning from partial power-down to full power-up state.

The following items are active during partial power-down operation:

- Oscillator is enabled.
- MPU-401 operates.
- PnP operates.
- Configuration device operates.
- H/W volume operates.
- Mixer operates.
- Analog operates.
- Joystick operates.
- Audio device is disabled, FM disabled.
- Automatic wake-up with any I/O activity to FM or audio registers except Audio\_Base+4h, Audio\_Base+5h, Audio\_Base+6h, Audio\_Base+7h.

### **Causing Partial Power-Down**

To enter partial power-down mode, bit 3 of port Audio\_Base+7h must be high and must remain high while pulsing bit 2 high, then low.

Example:

Powering down the ES1869 using system software timer interrupt:

In this example, it is assumed that the ES1869 is not using a crystal for its clock.

From a timer interrupt routine, read Audio\_Base+6h to monitor activity. After one minute of I/O inactivity, you decide that you want the ES1869 to power down completely, then return from a timer interrupt. The ES1869 wakes up automatically upon any I/O access to the ES1869 by any application.

- 1. See if the ES1869 is already powered down (bit 3 of port Audio\_Base+6h = 0). If so, there is nothing to do.
- Check if the ES1869 is being held in reset by reading bit 0 of port Audio\_Base+6h. If bit 0 is high, the reset must be released before power-down can occur: Clear bit 0 of port Audio\_Base+6h, then delay 1 millisecond or more for the ES1869 processor to complete its initialization.
- 3. Check to see if the ES1869 is in MIDI serial interface mode by testing bit 2 of port address Audio\_Base+6h. If so, it may not be prudent to power-down. While the ES1869 can power-down when in MIDI mode, it does not automatically wake up if serial data comes in to the MSI pin, and such data will be lost.
- 4. Send a power-down request to the chip by clearing bit 3 in port Audio\_Base+7h, then pulsing bit 2 high, then low. The other bits of this register should be preserved. The ES1869 processor sees the rising edge of bit 2 of port Audio\_Base+7h as an interrupt request to powerdown.

## Waking from Partial Power-Down

Any I/O activity, except Audio\_Base+6h or Audio\_Base+7h, automatically wakes the ES1869 from a partial power-down.

A low input on any of the three hardware volume control pins (VOLUP, VOLDN, or MUTE) also acts as a wake-up event.

## **Full Power-Down**

Complete power-down reduces the operating current to less than 50 microamps.

The following items are indicators of full power-down operation:

- Nothing operates, except for some programmed I/O.
- The activity flags from a port Audio\_Base+6h read are:

Bits Name Description

- 7 Act flag 2 Activity latch PnP, Joystick, MPU-401, Configuration, CD-ROM, Modem, or GPI/O or DMA activity.
- 6 Act flag 1 Activity latch: Audio\_Base+4h, Audio\_Base+5h I/O.
- 5 Act flag 0 Activity latch: Audio (except Audio\_Base+4h, Audio\_Base+5h, Audio\_Base+6h read, Audio\_Base+7h read/write), FM I/O or DMA.
- 4 Serial act DSP and ES689/ES69x serial activity status.



## Waking from Full Power-Down

There are three main ways to wake the chip up from full power-down:

- Hardware reset
- Software reset
- I/O activity

### Hardware Reset

The chip is automatically restored to activity upon a hardware reset. Context is not preserved.

### Software Reset

Refer to the section "Resetting the ES1869 by Software" on page 43 for information on the software reset sequence.

### I/O Activity Causing Wake-Up

Wake-up is triggered by DMA accesses. However, this is unlikely if power-down is triggered by a period of I/O inactivity, which includes DMA accesses and the I/O operations required to set up the DMA transfer.

In the full power-down state the oscillator is stopped and the analog circuitry is powered down. The AOUT\_L and AOUT\_R pins are left at approximately the reference voltage by a high value resistor divider.

To wake the chip from a total power-down and enter the partial power-down state, set bit 3 of port Audio\_Base+7h high for 25 milliseconds to allow the oscillator some time to stabilize. Any I/O activity, except Audio\_Base+6h or Audio\_Base+7h will automatically wake the ES1869 from a partial power-down.

## Inputs and Outputs During Power-Down

When powered-down, digital inputs that do not have pullup or pull-down devices should be driven high or low, and should not be left floating. Examples of such pins are A[11:0] and AEN.

Some input pins have circuitry that provides a pull-down device when the ES1869 digital circuits are powered up. During power-down, these inputs have a feedback device that latches the input state and prevents leakage current into the pin, effectively disabling the pull-down device. SE and DR are pins that have this feature.

The SE pin has a similar feature using a pull-up device rather than a pull-down device.

Output pins such as DRQx and IRQx are frozen in their state at power-down.

GPO0 and GPO1 can change state during full powerdown if so programmed (see the section entitled "General-Purpose Outputs and Power-Down" on page 77).

The MSI pin has an internal pull-up device, so this pin can be left floating during power-down.

The internal inverter connected to pins XI and XO continues to operate when the digital portion of the ES1869 is powered-down as long as:

- SCLK is high
- The analog portion is powered-up

When the chip is fully powered-down, the inverter becomes high-impedance with a weak pull-up on the XO pin.

CMR is pulled low by an internal transistor during analog power-down.

The AOUT\_L and AOUT\_R pins are held at approximately the idle voltage level with a high-impedance resistor divider. After return to full power-up state from full powerdown state, these pins are not enabled for 48-64 milliseconds. The chip remains in full power-up state for at least 64 milliseconds to assure that the AOUT\_L and AOUT\_R pins are enabled before changing to the partial power-down state. Otherwise they may never get enabled. For this reason it is not possible to go directly from full power-down to partial power-down and have AOUT\_L and AOUT\_R enabled.

## Suspend/Resume

In suspend/resume, power is removed from the ES1869 during its suspended state. Before removing power, the entire context of the microcontroller and registers must be uploaded to the system processor and saved. After restoring power and generating a hardware reset, the opposite resume operation downloads the context.

The term "suspend" is used here to describe the process of uploading the context of the ES1869 and removing digital and analog power to the chip. The term "resume" describes the process of applying power to the ES1869 and downloading the context.

The ES1869 requires 782 (decimal) bytes to store its entire context.

It is possible to suspend the ES1869 regardless of its current state. This includes suspending in the middle of a DMA transfer.

To suspend operation of the ES1869, pulse bit 7 of port address Audio\_Base+7h high, then low. This interrupts the ES1869 microcontroller and begins a sequence of upload operations.

To resume operation of the ES1869, a hardware reset is required before downloading the context. Downloading the context is initiated with command C1h. Before sending the download command, send the C6h command to enable access to the Extension commands.

POWER MANAGEMENT



### Pop Prevention in the External Amplifier

Normally, to directly drive speakers in an ES1869 design, an external stereo amplifier chip is used. There are two power management problems associated with an external amplifier:

- 1. The amplifier itself draws current unless it can be powered down.
- 2. Suspend/resume causes pops because power is removed from the ES1869 and then re-applied.

Amplifiers such as the SGS/Thomson TDA7233 have a mute input which reduces current to 400 microamps and also reduces pops from the suspend/resume process. This part is a mono amplifier, so two are required. Connect GPO0 to the active-low MUTE input of the TDA7233. In this case the amplifier is muted after hardware reset. During start-up, program the ES1869 so that GPO0 is high when powered-up and low when fully powered-down. Program a delay of about 133 milliseconds between power-down and power-up states, before GPO0 returns high, to allow the ES1869 analog circuits to stabilize.

### Power Management and the FM Synthesizer

The ES1869 FM synthesizer is a fully static design. This means that the clock can be stopped to power-down the circuitry without loss of the state. For suspend/resume applications, the entire context of the synthesizer can be read back.

### Self-Timed Power-Down

The ES1869 microcontroller can be programmed to monitor I/O activity in place of the system processor, and after a programmable period of inactivity, enter either a partial or full power-down state.

In self-timed power-down, power is maintained as for partial or full power-down, except the decision to power-down is made by the ES1869 itself. The ES1869 microcontroller waits for a pre-programmed period of I/O inactivity between successive commands before entering partial or full powerdown state.

The ES1869 requires use of the activity flags in register Audio\_Base+6h. Therefore, if this feature is enabled, the system processor cannot monitor I/O activity.

### **Enabling Self-Timed Power-Down**

- 1. Send command C6h to enable access to the controller registers.
- 2. Send command BDh.
- Send the time out value N, where the time period is N x 8 seconds. If the value N is zero, self-timed powerdown is disabled.
- 4. Send command C7h to disable access to the controller registers.

Whether the ES1869 enters partial or full power-down is determined by bit 3 of port Audio\_Base+7h.

Even if self-timed power-down is enabled, the ES1869 can be commanded to power-down by bit 2 of port Audio\_Base+7h.

There is one limitation to this feature. The timing of inactivity only occurs between commands sent to the ES1869. A program may leave the ES1869 in a state where timing will not happen, such as if it exits without completion of a DMA transfer. However, most programs will leave the ES1869 with appropriate registers defined.

### **General-Purpose Outputs and Power-Down**

The ES1869 has the ability to have one or both of the general-purpose outputs GPO0 and GPO1 change state when the ES1869 is powered-down.

After hardware reset, this feature is disabled and the general-purpose outputs are not affected by power-down. A controller register in the ES1869 must be programmed to enable this feature. Specifically, the GPO Power-Down Control register is set by writing the command CFh to port Audio\_Base+Ch followed by the data. To read the GPO Power-Down Control register write the command CEh to Audio Base+Ch and read the data from port Audio Base+Ah. This register should be set once by system software after system reset. This register is unaffected by soft resets. Using this register, one or both of the general-purpose outputs can be programmed to be inverted from their normal state during power-down. The normal state of each pin is set by the appropriate bits 1:0 of port Audio Base+7h. A further feature allows the inverted outputs to return to their normal state immediately after power-up or after a programmed delay after power-up.

#### **GPO Power-Down Register**

| Restore<br>GPO1 timed | Invert GPO1<br>at PDN | Restore<br>GPO0 timed | Invert GPO0<br>at PDN | 0 | T2 | T1 | то |
|-----------------------|-----------------------|-----------------------|-----------------------|---|----|----|----|
| 7                     | 6                     | 5                     | 4                     | 3 | 2  | 1  | 0  |

On reset, this register assumes the value of 00h. This means that GPO0 and GPO1 are unaffected by the powerdown status; that is, they remain in the state programmed into port Audio\_Base+7h.

**NOTE:** "Power-down" as used in this document refers to full power-down, i.e., when both the analog and digital parts of the ES1869 are powered-down.



## **Bits Definitions:**

| <u>Bits</u> | Name                                       | Description                                                                                                                                                                                                                                                       |
|-------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7           | Delay<br>GPO1<br>state<br>return<br>enable | <ul> <li>1 = Delay GPO1's return to its normal state as determined by port Audio_Base+7h bit 1. The time delay is determined by bits 2:0, described below.</li> <li>0 = Return GPO1 to its normal state immediately upon wake-up from full power-down.</li> </ul> |
| 6           | GPO1<br>invert<br>enable                   | 1 = Invert bit 1 of Audio_Base+7h when enter-<br>ing the full power-down state.                                                                                                                                                                                   |
| 5           | Delay<br>GPO0<br>state<br>return<br>enable | <ul> <li>1 = Delay GPO0's return to its normal state as determined by port Audio_Base+7h bit 0. The time delay is determined by bits 2:0, described below.</li> <li>0 = Return GPO0 to its normal state immediately upon wake-up from full power-down.</li> </ul> |
| 4           | GPO1<br>invert<br>enable                   | 1 = Invert bit 0 of Audio_Base+7h when enter-<br>ing the full power-down state.                                                                                                                                                                                   |
| 3           | _                                          | Reserved. Always write 0.                                                                                                                                                                                                                                         |
| 2:0         | Time<br>delay                              | The time period is determined by bits [2:0]: A 16 Hz counter starts at 0 and counts until it equals the 3-bit number "time delay". The maximum delay is (Time delay = 7) times (67 msec) or about 469 msec.                                                       |

ELECTRICAL CHARACTERISTICS



# **ELECTRICAL CHARACTERISTICS**

## **Absolute Maximum Ratings**

| Ratings                     | Symbol | Value       | Units |
|-----------------------------|--------|-------------|-------|
| Analog supply voltage       | VDDA   | -0.3 to 7.0 | V     |
| Digital supply voltage      | VDDD   | -0.3 to 7.0 | V     |
| Input voltage               | VIN    | -0.3 to 7.0 | V     |
| Operating temperature range | TA     | 0 to 70     | Deg C |
| Storage temperature range   | TSTG   | -50 to 125  | Deg C |

**WARNING:** Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

## **Thermal Characteristics**

Table 27 Digital Characteristics

The ES1869 was designed to operate at temperatures between 0°C and +70°C.

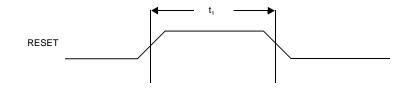
## **Operating Conditions**

The ES1869 digital and analog characteristics operate under the following conditions:

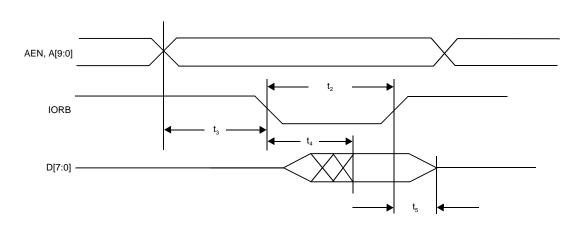
| VDDD | 4.5 V to 5.5 V   | (5 volts ± 10%) |
|------|------------------|-----------------|
| VDDA | 4.75 V to 5.25 V | (5 volts ± 5%)  |
| ТА   | 25 °C            |                 |

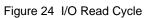
## **Operating Current**

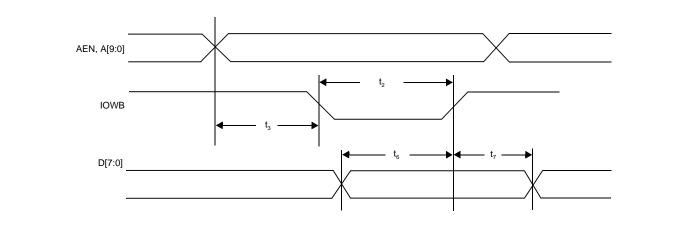
| Operation       | Analog | Digital | Digital |
|-----------------|--------|---------|---------|
| Operation       | 5 V    | 3.3 V   | 5 V     |
| Full power-up   | 61 mA  | 12 mA   | 25 mA   |
| Idle (standby)  | 61 mA  | 1.2 mA  | 2.5 mA  |
| Full power-down | 8 μΑ   | 10 µA   | 16 μA   |

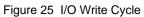

| Parameter                                                              | Symbol | Min   | Тур   | Max | Unit (conditions)        |
|------------------------------------------------------------------------|--------|-------|-------|-----|--------------------------|
| Input high voltage: all inputs except<br>VOLUP,VOLDN,MUTE,PSEL,SW(A-D) | VIH1   | 2.5 V |       |     | VDDD = max               |
| Input high voltage: VOLUP, VOLDN, MUTE, PSEL, SW(A-D)                  | VIH2   | 4.0 V |       |     | VDDD = max               |
| Input low voltage                                                      | VIL    |       | 0.8 V |     | VDDD = min               |
| Output low voltage: all outputs except D[7:0], DRQx, IRQx              | VOL1   |       | 0.4 V |     | IOL = 4 mA, VDDD = max   |
| Output low voltage: D[7:0], DRQx, IRQx                                 | VOL2   |       | 0.4 V |     | IOL = 16 mA, VDDD = min  |
| Output high voltage: all outputs except D[7:0], DRQx, IRQx             | VOH1   | 2.5 V |       |     | IOH = -3 mA, VDDD = max  |
| Output high voltage: D[7:0], DRQx, IRQx                                | VOH2   | 2.5 V |       |     | IOH = -12 mA, VDDD = min |

### Table 28 Analog Characteristics


| Parameter         | Pins                                                   | Min  | Тур  | Max      | Unit (conditions) |
|-------------------|--------------------------------------------------------|------|------|----------|-------------------|
| Reference voltage | CMR, VREF                                              |      | 2.25 |          | volts             |
| Input Impedance   | LINE_L, LINE_R, AUXA_L, AUXA_R,<br>AUXB_L, AUXB_R, MIC |      | 125k |          | ohms              |
|                   | CIN_L, CIN_R                                           | 35k  | 50k  | 65k      | ohms              |
| Output impedance  | FOUT_L, FOUT_R                                         | 3.5k | 5k   | 6.5k     | ohms              |
|                   | AOUT_L, AOUT_R max load for full-scale output          |      | 10k  |          | ohms              |
| Input voltage     | MIC – preamp ON                                        |      |      | 150      | mVp-p             |
|                   | – preamp OFF                                           |      |      | 2.8      | Vp-р              |
|                   | LINE_L, LINE_R, AUXA_L, AUXA_R,<br>AUXB_L, AUXB_R      |      |      | 3.4      | Vр-р              |
| Output voltage    | AOUT_L, AOUT_R full-scale output range                 | 0.5  |      | VDDA-1.0 | Vp-р              |
| Mic preamp gain   | MIC                                                    |      | 26   |          | decibels          |





# **TIMING DIAGRAMS**














TIMING DIAGRAMS



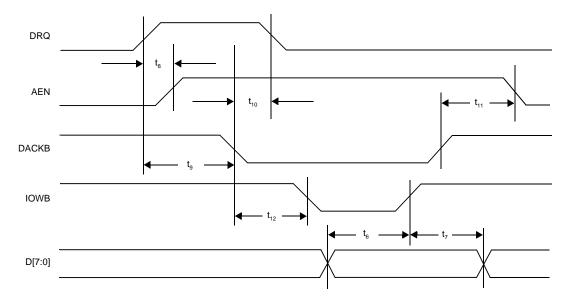



Figure 26 Compatibility Mode DMA Write Cycle

**NOTE:** In Compatibility mode DMA, the DMA request is reset by the acknowledge signal going low. In Extended mode DMA, the DMA request is reset when the acknowledge signal is low AND the correct command signal is low – either IORB (for DMA read from I/O device) or IOWB (for DMA writer to I/O device). For Extended mode DMA, the time  $t_{10}$  is relative to the later of the falling edge of the acknowledge signal, or the command signal.

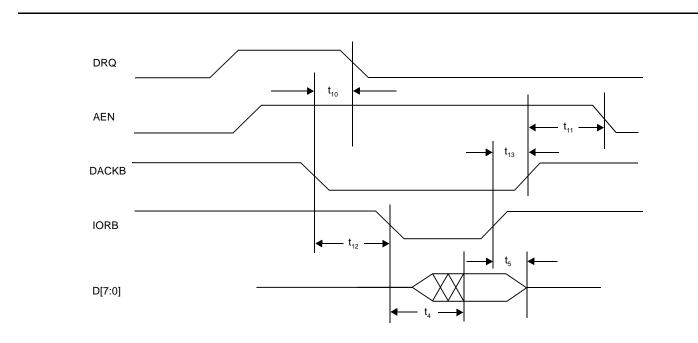
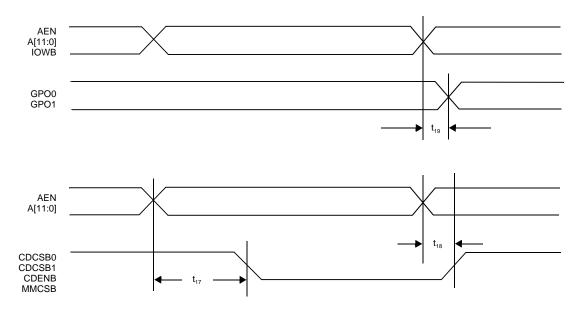
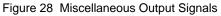





Figure 27 Compatibility Mode DMA Read Cycle







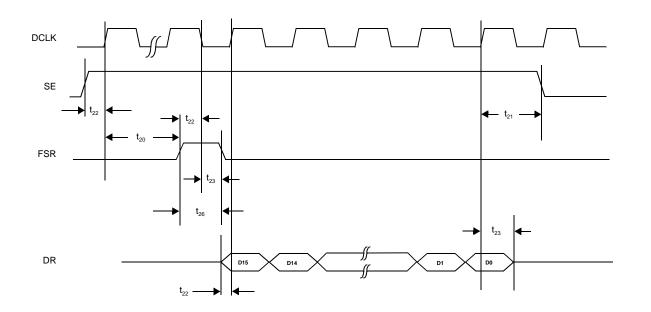



Figure 29 Serial Mode Receive Operation

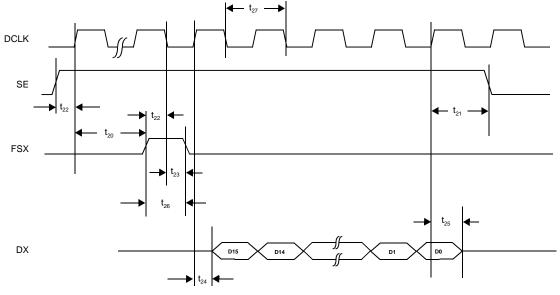



Figure 30 Serial Mode Transmit Operation

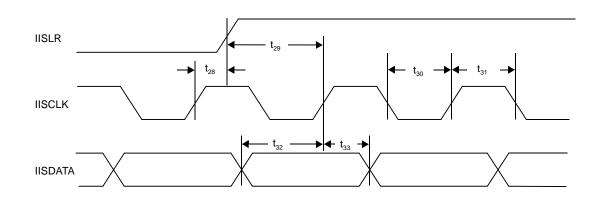



Figure 31 Serial Input Timing for I<sup>2</sup>S Interface

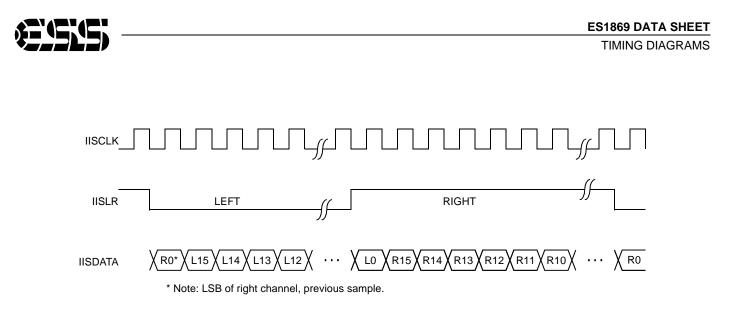


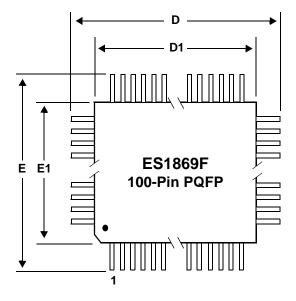

Figure 32 I<sup>2</sup>S Digital Input Format with 16 SCLK Periods

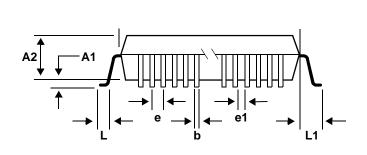
TIMING CHARACTERISTICS



## TIMING CHARACTERISTICS

Table 29 Timing Characteristics


| Symbol          | Parameter                                       | Min | Тур    | Max | Units |
|-----------------|-------------------------------------------------|-----|--------|-----|-------|
| t <sub>1</sub>  | Reset pulse width                               | 300 |        |     | ns    |
| t <sub>2</sub>  | IORB, IOWB pulse width                          | 100 |        |     | ns    |
| t <sub>3</sub>  | Address setup time                              | 10  |        |     | ns    |
| t <sub>4</sub>  | Read data access time                           |     |        | 70  | ns    |
| t <sub>5</sub>  | Read data hold time                             |     |        | 10  | ns    |
| t <sub>6</sub>  | Write data setup time                           | 5   |        |     | ns    |
| t <sub>7</sub>  | Write data hold time                            | 10  |        |     | ns    |
| t <sub>8</sub>  | DMA request to AEN high                         | 0   |        |     | ns    |
| t <sub>9</sub>  | DMA request to DMA ACK                          | 10  |        |     | ns    |
| t <sub>10</sub> | DMA ACK to request release *                    |     |        | 30  | ns    |
| t <sub>11</sub> | DMA ACK high to AEN low                         | 0   |        |     | ns    |
| t <sub>12</sub> | DMA ACK to IOWB, IORB low                       | 0   |        |     | ns    |
| t <sub>13</sub> | IOWB, IORB to DMA ACK release                   | 20  |        |     | ns    |
| t <sub>14</sub> | Crystal frequency, XI/XO                        |     | 14.318 |     | MHz   |
| t <sub>17</sub> | AEN, A[11:0], CDCSB0, CDCSB1, MMCSB, CDENB low  |     |        | 20  | ns    |
| t <sub>18</sub> | AEN, A[11:0], CDCSB0, CDCSB1, MMCSB, CDENB high |     |        | 20  | ns    |
| t <sub>19</sub> | AEN, A[11:0], IOWB, IORB to GPO0, GPO1 delays   |     |        | 20  | ns    |
| t <sub>20</sub> | SE high to valid FSR, FSX edge                  | 2   |        |     | DCLK  |
| t <sub>21</sub> | SE release time to Last DX, DR data bit         | 1   |        |     | DCLK  |
| t <sub>22</sub> | SE, FSX, FSR setup time to DCLK edge            | 15  |        |     | ns    |
| t <sub>23</sub> | SE, FSX, FSR, DR hold time to DCLK edge         | 10  |        |     | ns    |
| t <sub>24</sub> | DX delay time from DCLK edge                    |     |        | 20  | ns    |
| t <sub>25</sub> | DX hold time from DCLK edge                     | 10  |        |     | ns    |
| t <sub>26</sub> | FSR, FSX pulse width                            | 60  | 500    |     | ns    |
| t <sub>27</sub> | DCLK clock frequency                            |     | 2.04   |     | MHz   |
| t <sub>28</sub> | IISCLK delay                                    | 2   |        |     | ns    |
| t <sub>29</sub> | IISCLK setup                                    | 32  |        |     | ns    |
| t <sub>30</sub> | Bit clock low                                   | 22  |        |     | ns    |
| t <sub>31</sub> | Bit clock high                                  | 22  |        |     | ns    |
| t <sub>32</sub> | Data setup time                                 | 32  |        |     | ns    |
| t <sub>33</sub> | Data hold time                                  | 2   |        |     | ns    |


**NOTE:** \* In Compatibility mode DMA, the DMA request is reset by the acknowledge signal going low. In Extended mode DMA, the DMA request is reset when the acknowledge signal is low AND the correct command signal is low – either IORB (for DMA read from I/O device) or IOWB (for DMA write to I/O device). For Extended mode DMA, the time  $t_{10}$  is relative to the later of the falling edge of the acknowledge signal or the command signal.



# **MECHANICAL DIMENSIONS**

## ES1869F PQFP Package





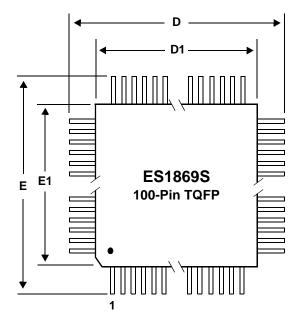

| Symbol | Description               | Millimeters |       |       |  |
|--------|---------------------------|-------------|-------|-------|--|
| Symbol | Description               | Min         | Nom   | Max   |  |
| D      | Lead to lead, X-axis      | 23.65       | 23.90 | 24.15 |  |
| D1     | Package's outside, X-axis | 19.90       | 20.00 | 20.10 |  |
| E      | Lead to lead, Y-axis      | 17.65       | 17.90 | 18.15 |  |
| E1     | Package's outside, Y-axis | 13.90       | 14.00 | 14.10 |  |
| A1     | Board standoff            | 0.10        | 0.25  | 0.36  |  |
| A2     | Package thickness         | 2.57        | 2.71  | 2.87  |  |
| b      | Lead width                | 0.20        | 0.30  | 0.40  |  |
| е      | Lead pitch                | -           | 0.65  | -     |  |
| e1     | Lead gap                  | 0.24        | -     | -     |  |
| L      | Foot length               | 0.65        | 0.80  | 0.95  |  |
| L1     | Lead length               | 1.88        | 1.95  | 2.02  |  |
| -      | Foot angle                | 0°          |       | 7°    |  |
| -      | Coplanarity               | -           | -     | 0.102 |  |
| -      | Leads in X-axis           | -           | 30    | -     |  |
| -      | Leads in Y-axis           | -           | 20    | -     |  |
| -      | Total leads               | -           | 100   | -     |  |
| -      | Package type              | -           | PQFP  | -     |  |

Figure 33 ES1869F PQFP Mechanical Dimensions

MECHANICAL DIMENSIONS



# ES1869S TQFP Package





| Sympol | Description               | Millimeters |          |       |  |
|--------|---------------------------|-------------|----------|-------|--|
| Symbol | Description               | Min         | Nom      | Max   |  |
| D      | Lead to lead, X-axis      | 15.75       | 16.00    | 16.25 |  |
| D1     | Package's outside, X-axis | 13.90       | 14.00    | 14.10 |  |
| Е      | Lead to lead, Y-axis      | 15.75       | 16.00    | 16.25 |  |
| E1     | Package's outside, Y-axis | 13.90       | 14.00    | 14.10 |  |
| A1     | Board standoff            | 0.05        | 0.10     | 0.15  |  |
| A2     | Package thickness         | 1.35        | 1.40     | 1.45  |  |
| b      | Lead width                | 0.17        | 0.22     | 0.27  |  |
| е      | Lead pitch                | -           | 0.50 BSC | -     |  |
| e1     | Lead gap                  | 0.24        | -        | -     |  |
| L      | Foot length               | 0.45        | 0.60     | 0.75  |  |
| L1     | Lead length               | 0.93        | 1.00     | 1.07  |  |
| -      | Foot angle                | 0°          |          | 7°    |  |
| -      | Coplanarity               | -           | -        | 0.102 |  |
| -      | Leads in X-axis           | -           | 25       | -     |  |
| -      | Leads in Y-axis           | -           | 25       | -     |  |
| -      | Total leads               | -           | 100      | -     |  |
| -      | Package type              | -           | TQFP     | -     |  |

Figure 34 ES1869S TQFP Mechanical Dimensions



APPENDIX A: ES1869 PNP ROM DATA EXAMPLE

## **APPENDIX A: ES1869 PNP ROM DATA EXAMPLE**

16-bit address decode used with external device decoding. A[15:12] and AEN should be all zero.

**NOTE:** Contact your ESS sales representative or FAE for the most current EPROM data code for your hardware design.

LDN #0 Control Interface LDN #1 Audio (FM) MPU-401 LDN #2 Joystick LDN #3 IDE CD-ROM LDN #4 Modem (not used here)

\*\*\*\*\*\* ; Start of ESS Proprietary Header (8 bytes) **0A5H** ; PNP OK byte ; IRQA = 9 IRQB = 5059H **0A7H** ; IROC = 7 IROD = 10**0CBH** ; **IRQE** = 11 **IRQF** = 12 010H ; DRQA = 0 DRQB = 1053H ; DRQC = 3 DRQD = 5**002H** ; MPU-401 part of audio, CD, DRQ latching off **00CH** ; GPO1/GPI are not used by Modem DMA channel or g.p. \*\*\*\*\*\*\* : Start of PNP Resource Header 016H, 073H, 018H, 069H ; "ESS1869A" product id for ES1869 **OFFH, OFFH, OFFH, OFFH** ; serial number FFFFFFF (not supported) **000H** : header checksum 00AH, 010H, 010H ; PNP 1.0, ESS version 1.0 082H, 023H, 000H, "ESS ES1869 Plug and Play AudioDrive" \*\*\*\*\*\* : LOGICAL DEVICE 0 -- Configuration Ports ; 8 bytes at any I/O address that is a multiple of 8 \*\*\*\*\*\* 015H, 016H, 073H, 000H, 006H, 000H ; ESS0006 047H, 001H, 000H, 008H, 0F8H, 00FH, 008H, 008H ; 800-FF8 8 bytes

#### **ES1869 DATA SHEET**

APPENDIX A: ES1869 PNP ROM DATA EXAMPLE



; Basic configuration 0000

031H, 000H 02AH, 002H, 008H 02AH, 009H, 008H 022H, 020H, 000H 047H, 001H, 020H, 002H, 020h, 002h, 000H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 000H, 004H 047H, 001H, 030H, 003H, 030H, 003H, 000H, 002H

; Basic configuration 0001

 031H, 001H
 ; DN

 02AH, 002H, 008H
 ; DN

 02AH, 009H, 008H
 ; DN

 022H, 0A0H, 006H
 ; IN

 047H, 001H, 020H, 002H, 040H, 002H, 020H, 010H
 ; 220

 047H, 001H, 088H, 003H, 088H, 003H, 000H, 004H
 ; 383

 047H, 001H, 000H, 003H, 030H, 003H, 030H, 002H
 ; 300

; Basic configuration 0002

031H, 001H 02AH, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 01EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 002H, 002H 047H, 001H, 000H, 003H, 030H, 003H, 030H, 002H

; Basic configuration 0003

031H, 001H 002H, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 01EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 000H, 004H 047H, 001H, 000H, 008H, 0FEH, 00FH, 002H, 002H

; Basic configuration 0004

031H, 002H 02AH, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 01EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 000H, 008H, 0FCH, 00FH, 004H, 004H 047H, 001H, 000H, 008H, 0FEH, 00FH, 002H, 002H 038H ; DMA 0: DRQ 1 ; DMA 1: DRQ 0 or 3 ; INT 0: IRQ 5 ; 220 16 bytes ; 388 4 bytes ; 330 2 bytes

; DMA 0: DRQ 1 ; DMA 1: DRQ 0 or 3 ; INT 0: IRQ 5, 7, 9, or 10 ; 220 or 240 16 bytes ; 388 4 bytes ; 300 or 330 2 bytes

; DMA 0: DRQ 0, 1 or 3 ; DMA 1: DRQ 0, 1 or 3 ; INT 0: IRQ 5, 7, 9, 10, 11, or 12 ; 220, 240, 260, 280 16 bytes ; 388 4 bytes ; 330 or 330 2 bytes

; DMA 0: DRQ 0, 1 or 3 ; DMA 1: DRQ 0, 1 or 3 ; INT 0: IRQ 5, 7, 9, 10, 11, or 12 ; 220, 240, 260, 280 16 bytes ; 388 4 bytes ; 800/801-FFE/FFF 2 bytes

; DMA 0: DRQ 0, 1 or 3 ; DMA 1: DRQ 0, 1 or 3 ; INT 0: IRQ 5, 7, 9, 10, 11, or 12 ; 220, 240, 260, 280 16 bytes ; 800/804-FFC/FFF 4 bytes ; 800/801-FFE/FFF 2 bytes

; end configurations





## APPENDIX A: ES1869 PNP ROM DATA EXAMPLE

| • ************************************                                                               | **                                                    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ;<br>; LOGICAL DEVICE 2 Joystick<br>; Only choice is one address at 201.                             |                                                       |
| ;<br>; ***********************************                                                           | **                                                    |
| ; Basic configuration 0000                                                                           |                                                       |
| 031H, 000H<br>047H, 001H, 001H, 002H, 001H, 002H, 000H, 001H ; 2                                     | 201 1 byte                                            |
| ; Windows95 joystick driver will only allow 200-20F!!!                                               |                                                       |
| ; Basic configuration 0001                                                                           |                                                       |
| 031H, 001H<br>047H, 001H, 000H, 002H, 00FH, 002H, 001H, 001H                                         | ; 200/200-20F/20F 1 byte                              |
| 038H<br>01CH, 041H, 0D0H, 0B0H, 02FH                                                                 | ; end dependent functions<br>; Compatible ID: PNPB02F |
| • ************************************                                                               | **                                                    |
| ;<br>; LOGICAL DEVICE 3 IDE CD-ROM<br>; needs an IRQ (10, 11, or 12) and two separate address ranges |                                                       |
| ;<br>; ***********************************                                                           | **                                                    |
| ; Basic configuration 0000                                                                           |                                                       |
| 031H, 000H                                                                                           |                                                       |
| 022H, 000H, 00EH                                                                                     | ; IRQ 9 10 11                                         |
| 047H, 001H, 068H, 001H, 068H, 001H, 000H, 008H<br>047H, 001H, 06EH, 003H, 06EH, 003H, 000H, 002H     | ; 168 8 bytes<br>; 36E 2 bytes                        |
| ; Basic configuration 0001                                                                           |                                                       |
| 031H, 001H                                                                                           |                                                       |
| 022H, 000H, 00EH                                                                                     | ; IRQ 9 10 11                                         |
| 047H, 001H, 0E8H, 001H, 0E8H, 001H, 000H, 008H<br>047H, 001H, 0EEH, 003H, 0EEH, 003H, 000H, 002H     | ; 1E8 8 bytes                                         |
| 04/H, 001H, 0EEH, 005H, 0EEH, 005H, 000H, 002H                                                       | ; 3EE 2 bytes                                         |
| ; Basic configuration 0002                                                                           |                                                       |
| 031H, 001H                                                                                           |                                                       |
| 022H, 000H, 010H                                                                                     | ; IRQ 12                                              |
| 047H, 001H, 068H, 001H, 068H, 001H, 000H, 008H                                                       | ; 168 8 bytes                                         |
| 047H, 001H, 06EH, 003H, 06EH, 003H, 000H, 002H                                                       | ; 36E 2 bytes                                         |
| ; Basic configuration 0003                                                                           |                                                       |
| 031H, 001H                                                                                           | . IBO 12                                              |
| 022H, 000H, 010H<br>047H, 001H, 0E8H, 001H, 0E8H, 001H, 000H, 008H                                   | ; IRQ 12<br>; 1E8 8 bytes                             |
| 047H, 001H, 0E6H, 003H, 0EEH, 003H, 000H, 002H                                                       | ; 3EE 2 bytes                                         |
|                                                                                                      | -                                                     |

### ES1869 DATA SHEET

#### APPENDIX A: ES1869 PNP ROM DATA EXAMPLE



; Basic configuration 0004

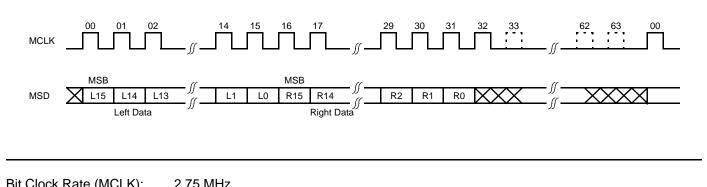
031H, 002H 022H, 000H, 01CH 047H, 001H, 000H, 001H, 0F8H, 001H, 008H, 008H 047H, 001H, 000H, 003H, 0FEH, 003H, 002H, 002H

038H 01CH, 041H, 0D0H, 006H, 000H ; IRQ 9 10 11 12 ; 100/1F8-107/1FF 8 bytes ; 300/301-3FE/3FF 2 bytes

; end dependent functions ; Compatible ID: PNP0600

079H, 000H

; end tag + checksum




# APPENDIX B: ES689/ES69x DIGITAL SERIAL INTERFACE

In order for the ES689/ES69x to acquire the FM DAC, bit 4 of mixer register 48h inside the ES1869 must be set high. When bit 4 is set high, activity on the MCLK signal causes the ES1869 to connect the FM DAC to the ES689/ ES69x. If MCLK stays low for more than a few sample periods, the ES1869 reconnects the FM DAC to the FM synthesizer.

After reset, the ES689/ES69x transmits samples continuously. In this mode, bit 4 of mixer register 48h must be set/cleared to assign the current owner of the FM DAC.

The ES689/ES69x can be programmed to enter Activity-Detect mode using system exclusive command 4. For more information on system exclusive commands, see the appropriate ES689/ES69x Data Sheet. In this mode, the ES689/ES69x blocks the serial port output (i.e., sets MSD and MCLK low) if no MIDI input is detected on the MSI pin for a period of 5 seconds. It resumes output of data on the serial port as soon as a MIDI input is detected on the MSI pin. This is the recommended mode of operation.



| Dit Olook Rate (MOER).  | 2.10 10112                                  |
|-------------------------|---------------------------------------------|
| Sample Rate:            | 42,968.75 Hz                                |
| MCLK Clocks per Sample: | 33 clocks (+ 31 missing clocks)             |
| MSD Format:             | 16 bits, unsigned (offset 8000h), MSB first |

MSD changes after rising edge of MCLK. Hold time relative to MCLK rising edge is 0-25 nanoseconds.

APPENDIX C: I2S ZV INTERFACE REFERENCE



# APPENDIX C: I<sup>2</sup>S ZV INTERFACE REFERENCE

(Excerpted from "PCMCIA Document Number 0135 – Release 010 1/15/96")

## Overview

The following diagram shows the system level concept of the ZV Port. The diagram demonstrates how TV in a window can be achieved in a portable computer with a low cost PC Card. An MPEG or teleconferencing card can also be plugged into the PC Card slot.

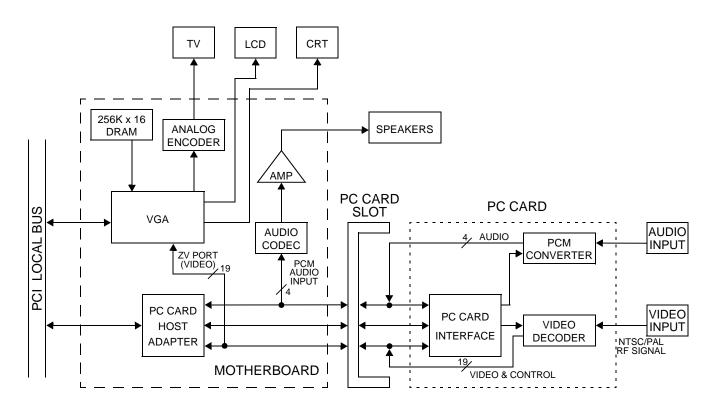
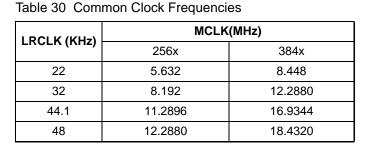


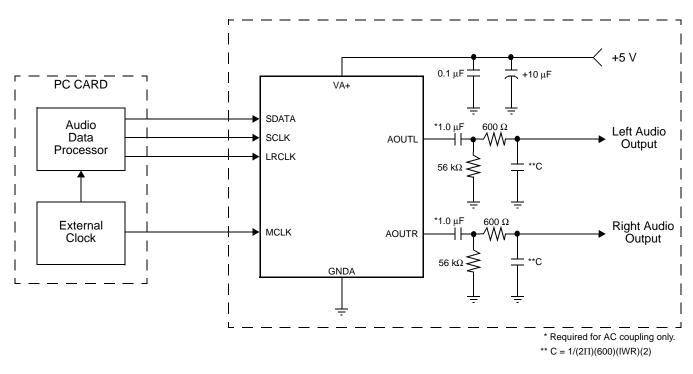

Figure 35 Example ZV Port Implementation



£1515)

### APPENDIX C: I<sup>2</sup>S ZV INTERFACE REFERENCE


### The Audio Interface


The ZV Port compliant PC Card sends audio data to the host computer using Pulse Code Modulation (PCM). Audio data is transferred using serial I<sup>2</sup>S format. The audio circuitry in the host system is primarily a PCM DAC.

The PCM audio DAC is a complete stereo digital-toanalog system including digital-interpolation, delta-sigma digital-to-analog conversion, digital de-emphasis and analog filtering. Only the normal power supply decoupling components and one resistor and capacitor per channel for analog signal reconstruction are required.

The DAC accepts data at standard audio frequencies including 48 kHz, 44.1 kHz, 32 kHz, and 22 kHz. Audio data is input via the serial data input pin, SDATA. The Left/ Right Clock (LRCLK) defines the channel and delineation of data. The Serial Clock (SCLK) clocks the audio data into the input data buffer. The Master Clock (MCLK) is used to operate the digital interpolation filter and the delta-sigma modulator.

**NOTE:** MCLK is not required in some I<sup>2</sup>S designs.







APPENDIX C: I2S ZV INTERFACE REFERENCE



## **Audio Interface Timing**

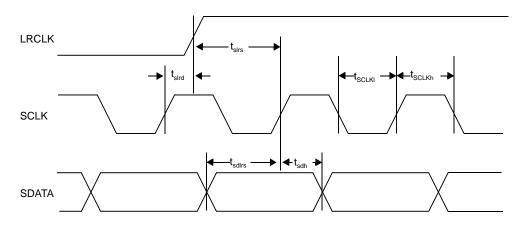



Figure 37 Audio Interface Timing

| Table 31 | <b>AC</b> Parameters | for | Audio | Signals |
|----------|----------------------|-----|-------|---------|
|----------|----------------------|-----|-------|---------|

| Symbol             | Parameter      | Min   |
|--------------------|----------------|-------|
| t <sub>slrd</sub>  | LRCLK delay    | 2 ns  |
| t <sub>sirs</sub>  | LRCLK setup    | 32 ns |
| t <sub>SCLKI</sub> | bit clock low  | 22 ns |
| t <sub>SCLKh</sub> | bit clock high | 22 ns |
| t <sub>sdlrs</sub> | data setup     | 32 ns |
| t <sub>sdh</sub>   | data hold      | 2 ns  |

## LRCLK

This signal determines which audio channel (left/right) is currently being input on the audio Serial Data input line. LRCLK is low to indicate the left channel and high to indicate the right channel. Typical frequency values for this signal are 48 kHz, 44.1 kHz, 32 kHz, and 22 kHz.

## SCLK

This signal is the serial digital audio PCM clock.

## **SDATA**

This signal is the digital PCM signal that carries audio information. Digital audio data is transferred using I<sup>2</sup>S format.

## MCLK

This signal is the Master clock for the digital audio. MCLK is asynchronous to LRCLK, SDATA, and SCLK.

The MCLK must be either 256x or 384x the desired Input Word Rate (IWR). IWR is the frequency at which words for each channel are input to the DAC and is equal to the LRCLK frequency. The following table illustrates several standard audio word rates and the required MCLK and LRCLK frequencies. Typically, most devices operate with 384 Fs master clock.

The ZV Port audio DAC should support a MCLK frequency of 384 Fs. This results in the frequencies shown below.

| LRCLK (kHz)<br>Sample Frequency | SCLK (MHz)<br>32 x Fs | MCLK (MHz)<br>384x Fs |
|---------------------------------|-----------------------|-----------------------|
| 22                              | 0.704                 | 8.448                 |
| 32                              | 1.0240                | 12.2880               |
| 44.1                            | 1.4112                | 16.9344               |
| 48                              | 1.5360                | 18.4320               |



## I<sup>2</sup>S Format

The I<sup>2</sup>S format is shown in Figure 38 below. The digital audio data is left-channel MSB-justified to the high-to-low going edge of the LRCLK plus one SCLK delay.

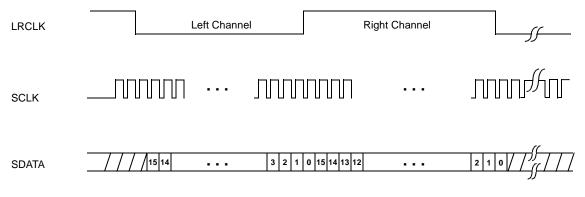



Figure 38 I<sup>2</sup>S Digital Input Format with 16 SCLK periods

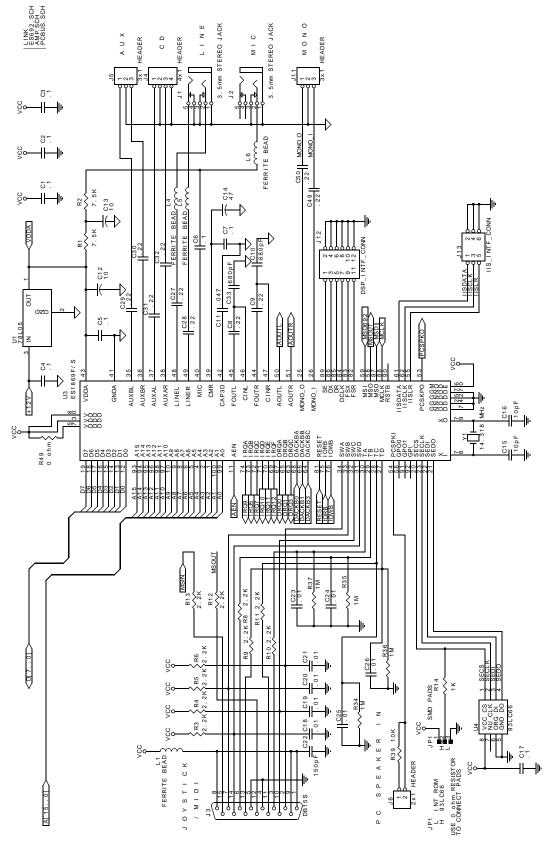
### ES1869 DATA SHEET

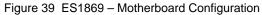
APPENDIX C: I2S ZV INTERFACE REFERENCE



## **ZV Port Pin Assignments**

Table 32 shows the function of various PC Card signals when the ZV Port custom interface mode is set in the PC Card Host Adapter. PC Card signals not mentioned in the table below remain unchanged from the 16-bit PC Card I/O and Memory interface.


| PC Card<br>Pin Number | I/O and Memory<br>Interface Signal Name | I/O and<br>Memory I/Oª | ZV Port Interface<br>Signal Name | ZV Port<br>I/Oª | Comments                                                       |
|-----------------------|-----------------------------------------|------------------------|----------------------------------|-----------------|----------------------------------------------------------------|
| 8                     | A10                                     | I                      | HREF                             | 0               | Horizontal Sync to ZV Port                                     |
| 10                    | A11                                     | I                      | VSYNC                            | 0               | Vertical Sync to ZV Port                                       |
| 11                    | A9                                      | I                      | Y0                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 12                    | A8                                      | I                      | Y2                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 13                    | A13                                     | I                      | Y4                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 14                    | A14                                     | I                      | Y6                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 19                    | A16                                     | I                      | UV2                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 20                    | A15                                     | I                      | UV4                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 21                    | A12                                     | I                      | UV6                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 22                    | A7                                      | I                      | SCLK                             | 0               | Audio SCLK PCM Signal                                          |
| 23                    | A6                                      | I                      | MCLK                             | 0               | Audio MCLK PCM Signal                                          |
| 24:25                 | A[5:4]                                  | I                      | RESERVED                         | RFU             | Put in three state by Host Adapter<br>No connection in PC Card |
| 26:29                 | A[3:0]                                  | I                      | ADDRESS[3:0]                     | I               | Used for accessing PC Card                                     |
| 33                    | IOIS16#                                 | 0                      | PCLK                             | 0               | Pixel Clock to ZV Port                                         |
| 46                    | A17                                     | I                      | Y1                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 47                    | A18                                     | I                      | Y3                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 48                    | A19                                     | I                      | Y5                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 49                    | A20                                     | I                      | Y7                               | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 50                    | A21                                     | I                      | UV0                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 53                    | A22                                     | I                      | UV1                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 54                    | A23                                     | I                      | UV3                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 55                    | A24                                     | I                      | UV5                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 56                    | A25                                     | I                      | UV7                              | 0               | Video Data to ZV Port YUV:4:2:2 format                         |
| 60                    | INPACK#                                 | 0                      | LRCLK                            | 0               | Audio LRCLK PCM Signal                                         |
| 62                    | SPKR#                                   | 0                      | SDATA                            | 0               | Audio PCM Data Signal                                          |


## Table 32 ZV Port Interface Pin Assignments

a. "I" indicates signal is input to PC Card, "O" indicates signal is output from PC Card



# **APPENDIX D: MOTHERBOARD SCHEMATICS**







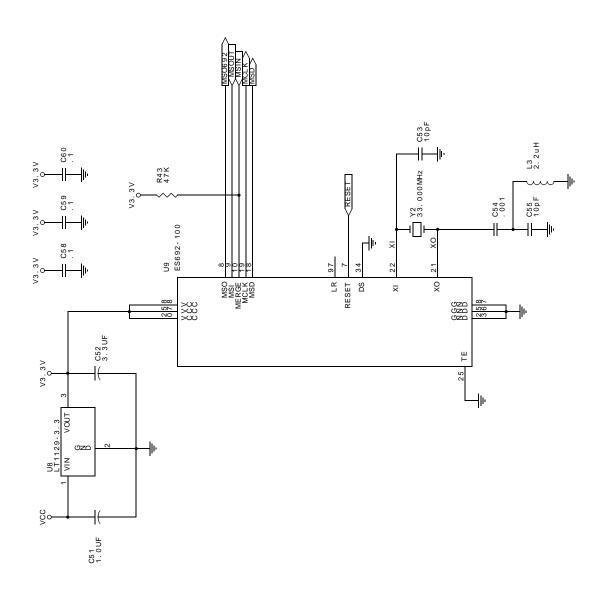
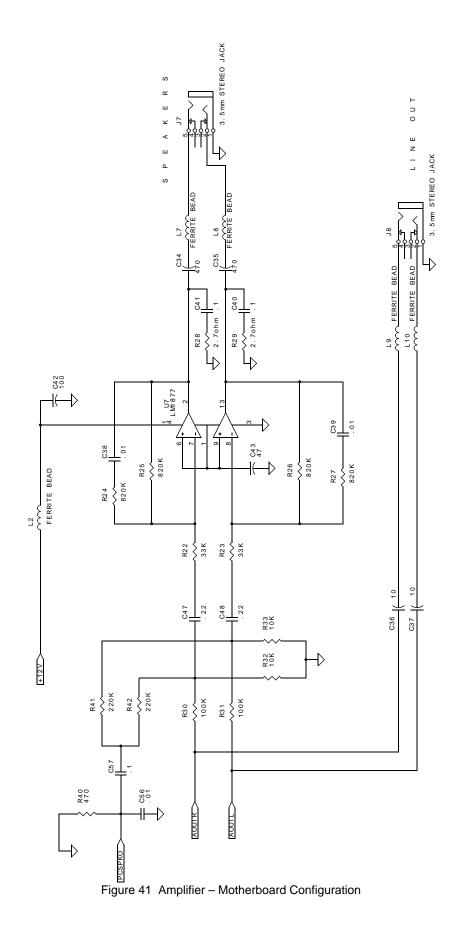
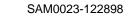





Figure 40 ES1869 and ES692 - Motherboard Configuration









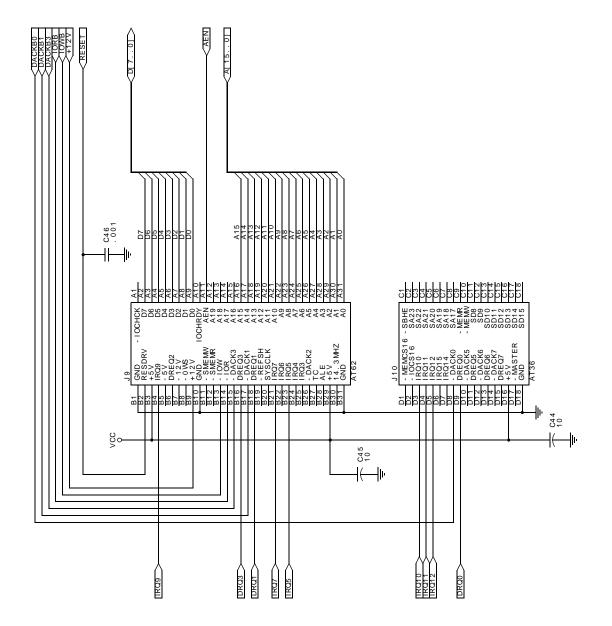



Figure 42 PC Interface – Motherboard Configuration



APPENDIX E: MOTHERBOARD BILL OF MATERIALS

# APPENDIX E: MOTHERBOARD BILL OF MATERIALS

| Table 33 E | S1869 Motherboa | rd Bill of Ma | aterials (BOM) |
|------------|-----------------|---------------|----------------|
|------------|-----------------|---------------|----------------|

| ltem | Quantity | Reference                                     | Part                                     |
|------|----------|-----------------------------------------------|------------------------------------------|
| 1    | 11       | C1,C2,C3,C4,C5,C6,C7,C17,C40,C41,C57          | .1 μF                                    |
| 2    | 12       | C8,C9,C27,C28,C29,C30,C31,C32,C47,C48,C49,C50 | .22 μF                                   |
| 3    | 1        | C46                                           | .001 μF                                  |
| 4    | 2        | C10,C33                                       | 680 pF                                   |
| 5    | 1        | C11                                           | .047 μF                                  |
| 6    | 6        | C2,C13,C36,C37,C44,C45                        | 10 μF                                    |
| 7    | 2        | C14,C43                                       | 47 μF                                    |
| 8    | 2        | C15,C16                                       | 10 pF                                    |
| 9    | 11       | C18,C19,C20,C21,C23,C24,C25,C26,C38,C39,C56   | .01 μF                                   |
| 10   | 1        | C22                                           | 150 pF                                   |
| 11   | 2        | C34,C35                                       | 470 μF                                   |
| 12   | 1        | C42                                           | 100 μF                                   |
| 13   | 2        | JP1 (1-2), JP2 (2-3)                          | 0 ohm                                    |
| 14   | 4        | J1,J2,J7,J8                                   | 3.5 mm Stereo Jack                       |
| 15   | 1        | J3                                            | DB15S                                    |
| 16   | 1        | J4                                            | 4x1 Header                               |
| 17   | 1        | J5                                            | 13x2 Header optional wavetable connector |
| 18   | 1        | J6                                            | 2x1 Header                               |
| 19   | 1        | J11                                           | 3x1 Header                               |
| 20   | 1        | J12                                           | 6x2 Header                               |
| 21   | 1        | J13                                           | 3x2 Header                               |
| 22   | 9        | L1,L2,L4,L5,L6,L7,L8,L9,L10                   | Ferrite Bead                             |
| 23   | 2        | R1,R2                                         | 7.5K                                     |
| 24   | 10       | R3,R4,R5,R6,R8,R9,R10,R11,R12,R13             | 2.2K                                     |
| 25   | 4        | R14,R15,R16,R17                               | 1K                                       |
| 26   | 1        | R40                                           | 470 ohm                                  |
| 27   | 1        | R18                                           | 22K                                      |
| 28   | 2        | R22,R23                                       | 33К                                      |
| 29   | 4        | R24,R25,R26,R27                               | 820K                                     |
| 30   | 2        | R28,R29                                       | 2.7 ohm                                  |
| 31   | 2        | R30,R31                                       | 100K                                     |
| 32   | 3        | R32,R33,R39                                   | 10K                                      |
| 33   | 4        | R34,R35,R36,R37                               | 1M                                       |
| 34   | 1        | R49                                           | 0 ohm                                    |
| 35   | 2        | R41,R42                                       | 220K                                     |
| 36   | 3        | S1,S2,S3                                      | Pushbutton                               |
| 37   | 1        | U1                                            | 78L05                                    |
| 38   | 1        | U3                                            | ES1869F/ES1869S                          |
| 39   | 1        | U4                                            | 93LC66                                   |
| 40   | 1        | U7                                            | LM1877                                   |

#### APPENDIX E: MOTHERBOARD BILL OF MATERIALS

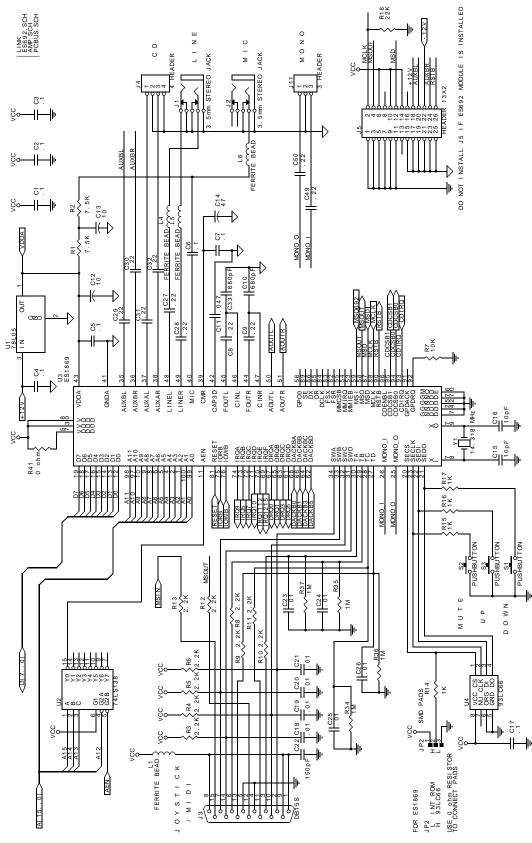
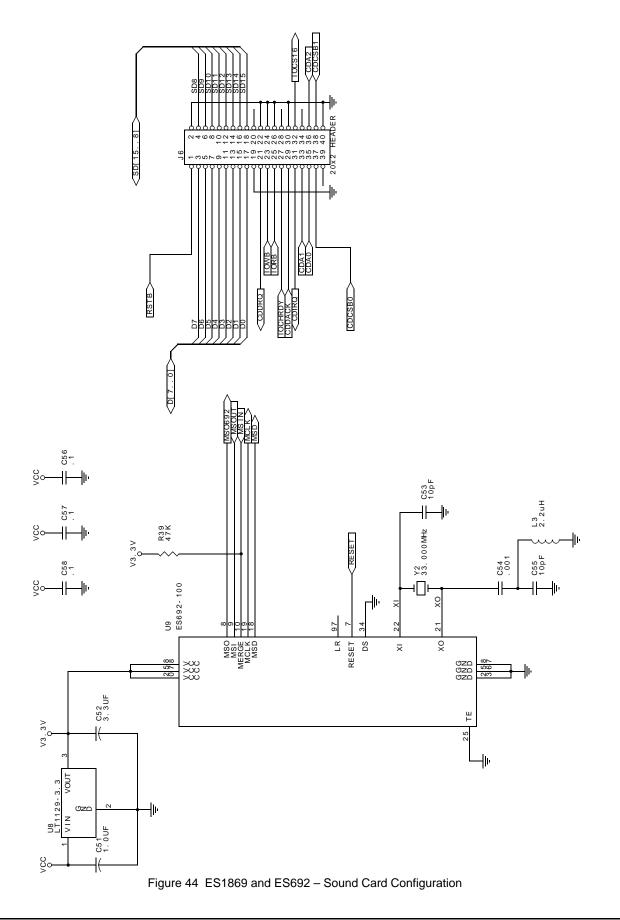
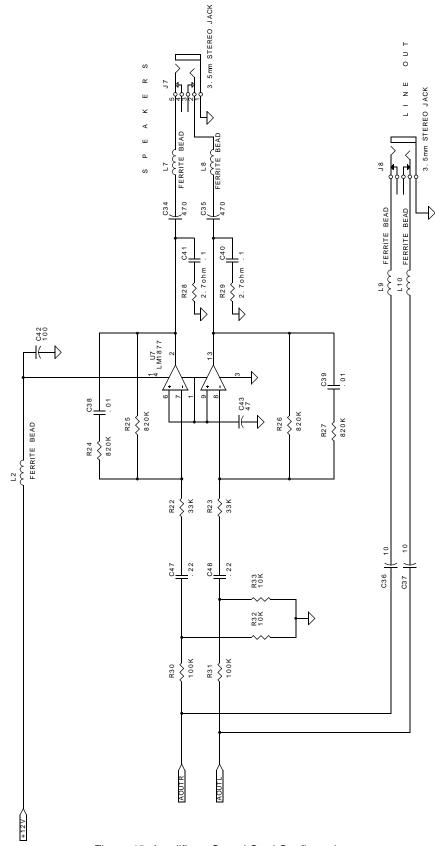


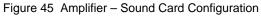
## Table 33 ES1869 Motherboard Bill of Materials (BOM) (Continued)

| Item | Quantity | Reference                          | Part          |
|------|----------|------------------------------------|---------------|
| 41   | 1        | Y1                                 | 14.318 MHz    |
| WITH | OPTIONAL | ES692 WAVETABLE MUSIC SYNTHESIZER: |               |
| 42   | 1        | U9                                 | ES692-TQFP100 |
| 43   | 1        | U8                                 | LT1129-3.3    |
| 44   | 1        | Y2                                 | 33.000 MHz    |
| 45   | 1        | C51                                | 1.0 μF        |
| 46   | 1        | C52                                | 3.3 μF        |
| 47   | 2        | C53,C55                            | 10 pF         |
| 48   | 1        | C54                                | .001 μF       |
| 49   | 3        | C58,C59,C60                        | .1 μF         |
| 50   | 1        | R43                                | 47K           |
| 51   | 1        | L3                                 | 2.2 μΗ        |



# **APPENDIX F: SOUND CARD SCHEMATICS**



Figure 43 ES1869 – Sound Card Configuration

£1515)









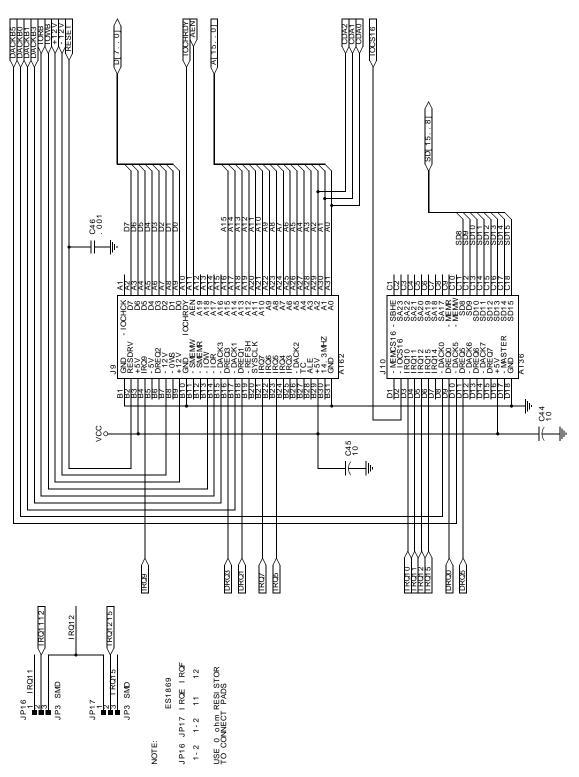



Figure 46 PC Interface – Sound Card Configuration



APPENDIX G: SOUND CARD BILL OF MATERIALS

# APPENDIX G: SOUND CARD BILL OF MATERIALS

| Table 34 | ES1869 Sound | Card Bill of | f Materials | (BOM) |
|----------|--------------|--------------|-------------|-------|
|----------|--------------|--------------|-------------|-------|

| Item |                                                  | Reference                                     | Part                                     |  |  |
|------|--------------------------------------------------|-----------------------------------------------|------------------------------------------|--|--|
| 1    | 10                                               | C1,C2,C3,C4,C5,C6,C7,C17,C40,C41              | .1 μF                                    |  |  |
| 2    | 12                                               | C8,C9,C27,C28,C29,C30,C31,C32,C47,C48,C49,C50 | .22 μF                                   |  |  |
| 3    | 1                                                | C46                                           | .001 µF                                  |  |  |
| 4    | 4                                                | C10,C33                                       | 680 pF                                   |  |  |
| 5    | 1                                                | C11                                           | .047 μF                                  |  |  |
| 6    | 6                                                | C12,C13,C36,C37,C44,C45                       | 10 μF                                    |  |  |
| 7    | 2                                                | C14,C43                                       | 47 μF                                    |  |  |
| 8    | 2                                                | C15,C16                                       | 10 pF                                    |  |  |
| 9    | 10                                               | C18,C19,C20,C21,C23,C24,C25,C26,C38,C39       | .01 μF                                   |  |  |
| 10   | 1                                                | C22                                           | 150 pF                                   |  |  |
| 11   | 2                                                | C34,C35                                       | 470 μF                                   |  |  |
| 12   | 1                                                | C42                                           | 100 μF                                   |  |  |
| 13   | 1                                                | JP2 (L), JP6 (11), JP17 (12)                  | 0 ohm                                    |  |  |
| 14   | 4                                                | J1,J2,J7,J8                                   | 3.5 mm Stereo Jack                       |  |  |
| 15   | 1                                                | J3                                            | DB15S                                    |  |  |
| 16   | 1                                                | J4                                            | 4x1 Header                               |  |  |
| 17   | 1                                                | J5                                            | 13x2 Header optional wavetable connector |  |  |
| 18   | 1                                                | J6                                            | 20x2 Header                              |  |  |
| 19   | 1                                                | J11                                           | 3x1 Header                               |  |  |
| 20   | 9                                                | L1,L2,L4,L5,L6,L7,L8,L9,L10                   | Ferrite Bead                             |  |  |
| 21   | 2                                                | R1,R2                                         | 7.5K                                     |  |  |
| 22   | 10                                               | R3,R4,R5,R6,R8,R9,R20,R22,R23,R24             | 2.2K                                     |  |  |
| 23   | 2                                                | R7,R19                                        | 10K                                      |  |  |
| 24   | 4                                                | R14,R15,R16,R17                               | 1К                                       |  |  |
| 25   | 1                                                | R18                                           | 22K                                      |  |  |
| 26   | 2                                                | R22,R23                                       | 33K                                      |  |  |
| 27   | 4                                                | R24,R25,R26,R27                               | 820K                                     |  |  |
| 28   | 2                                                | R28,R29                                       | 2.7 ohm                                  |  |  |
| 29   | 2                                                | R30,R31                                       | 100K                                     |  |  |
| 30   | 2                                                | R32,R33                                       | 10K                                      |  |  |
| 31   | 4                                                | R34,R35,R36,R37                               | 1M                                       |  |  |
| 32   | 1                                                | R41                                           | 0 ohm                                    |  |  |
| 33   | 3                                                | S1,S2,S3                                      | Pushbutton                               |  |  |
| 34   | 1                                                | U1                                            | 78L05                                    |  |  |
| 35   | 1                                                | U2                                            | 74LS138                                  |  |  |
| 36   | 1                                                | U3                                            | ES1869F                                  |  |  |
| 37   | 1                                                | U4                                            | 93LC66                                   |  |  |
| 38   | 1                                                | U7                                            | LM1877                                   |  |  |
| 39   | 1                                                | Y1                                            | 14.318 MHz                               |  |  |
| WITH | WITH OPTIONAL ES692 WAVETABLE MUSIC SYNTHESIZER: |                                               |                                          |  |  |

APPENDIX G: SOUND CARD BILL OF MATERIALS



## Table 34 ES1869 Sound Card Bill of Materials (BOM) (Continued)

| Item | Quantity | Reference   | Part          |
|------|----------|-------------|---------------|
| 40   | 1        | U9          | ES692-TQFP100 |
| 41   | 1        | U8          | LT1129-3.3    |
| 42   | 1        | Y2          | 33.000 MHz    |
| 43   | 1        | C51         | 1.0 μF        |
| 44   | 1        | C52         | 3.0 μF        |
| 45   | 2        | C53,C55     | 10 pF         |
| 46   | 1        | C54         | .001 μF       |
| 47   | 3        | C56,C57,C58 | .1 μF         |
| 48   | 1        | R39         | 47K           |
| 49   | 1        | L3          | 2.2 μΗ        |



## **APPENDIX H: LAYOUT GUIDELINES**

## **PCB** Layout

Notebook, motherboard, pen-based, and PDA portable computers have the following similarity in PCB layout design:

- 1. Multi-layer (usually 4 to 8 layer).
- 2. Double-sided SMT.
- 3. CPU, corelogic (chip set), system memory, VGA controller, and video memory reside in the same PCB.

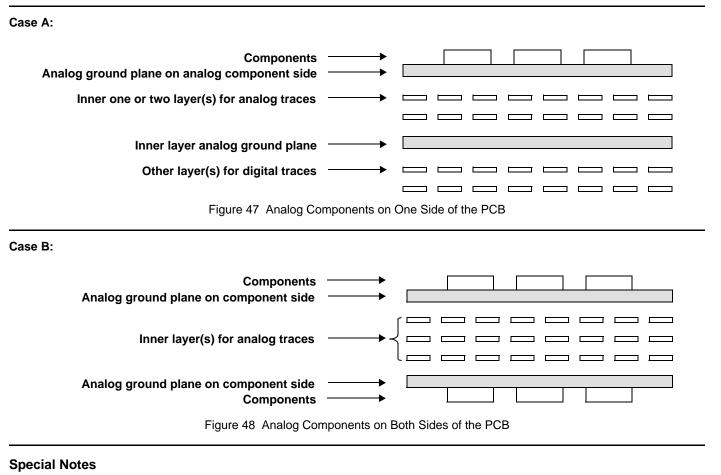
This is a very noisy environment for adding an audio circuit. The following are the guidelines for PCB layout for an ESS *Audio*Drive<sup>®</sup> chip application.

### **Component Placement**

The audio circuit-related components, including the audio I/O jack and connector, must be grouped in the same area.

There are two possible placements for these audio components:

- A grouped on one side of the PCB.
- B separated on both sides of the PCB.


In Case B, audio component grouping will take less space.

### **Analog Ground Plane**

Audio circuits require two layers of analog ground planes for use as shielding for all analog traces.

In component placement case A (Figure 47), the first layer of analog ground plane is on the analog component side, the second analog ground plane is on the inner layer, and the analog traces are embedded between these two planes.

In component placement case B (Figure 48), the analog ground planes are on both sides of the PCB, and the analog traces are shielded in the middle.



The analog traces should be placed as short as possible.

The MIC-IN circuit is the most sensitive of the audio circuits, and requires proper and complete shielding.

## ES1869 DATA SHEET

APPENDIX H: LAYOUT GUIDELINES



#### **ES1869 DATA SHEET**

APPENDIX H: LAYOUT GUIDELINES

## **ORDERING INFORMATION**

| Part Number |
|-------------|
| ES1869F     |
| ES1869S     |

Package Description 100-pin PQFP 100-pin TQFP



ESS Technology, Inc. 48401 Fremont Blvd. Fremont, CA 94539 Tel: 510-492-1088 Fax: 510-492-1088



No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc.

ESS Technology, Inc. makes no representations or warranties regarding the content of this document.

All specifications are subject to change without prior notice.

ESS Technology, Inc. assumes no responsibility for any errors contained herein.

(P) U.S. Patent 4,384,169 and others, other patents pending.

 $\textit{AudioDrive}^{\$}$  and  $\texttt{ESPCM}^{\$}$  are registered trademarks of ESS Technology, Inc.

 $\text{ESFM}^{\text{TM}}$  and  $\textit{AudioRack}^{\text{TM}}$  are trademarks of ESS Technology, Inc.

Certain audio features of this product manufactured under a license from Desper Products, Inc., <u>Spatializer</u><sup>®</sup> and the <u>circle-in-square device</u> are trademarks owned by Desper Products, Inc. U. S. Patent numbers <u>#4,308,423</u>, <u>#4,355,203</u>, <u>#5,412,731</u>.

All other trademarks are owned by their respective